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The function fi : Rn −→ R
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are the limits.

We want to find a vector
A vector x∗ is called optimal, or a solution of the problem.

If it has the smallest objective value among all vectors that satisfy the
constraints
for any z with f1(z) ≤ b1, ..., fm(z) ≤ bm

f0 (z) ≥ fi (x∗)
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We have several
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If the objective and constraint functions f0, ..., fm are linear:

fi (αx+ βy) = αfi (x) + βfi (y)

for all x,y ∈ Rn and all α, β ∈ R.

If the optimization problem is not linear
It is called a nonlinear program.
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constraint functions f0, ..., fm are convex:

fi (αx+ βy) ≤ αfi (x) + βfi (y)

for all x,y ∈ Rn and all α, β ∈ R.
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Example

In portfolio optimization
We seek the best way to invest some capital in a set of n assets.

Vector representation of Assets
The variable xi represents the investment in the ith asset:

xT = (x1, x2, x3, ..., xn)

Where the constraints might represent a limit on the budget
A limit on the total amount to be invested
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For Example

We have the following
The efficient frontier is the curve that shows all efficient portfolios in a
risk-return framework:

1 An efficient portfolio is defined as the portfolio that maximizes the
expected return for a given amount of risk (standard deviation).

2 The portfolio that minimizes the risk subject to a given expected
return.

14 / 124



Images/cinvestav.jpg

For Example

We have the following
The efficient frontier is the curve that shows all efficient portfolios in a
risk-return framework:

1 An efficient portfolio is defined as the portfolio that maximizes the
expected return for a given amount of risk (standard deviation).

2 The portfolio that minimizes the risk subject to a given expected
return.

14 / 124



Images/cinvestav.jpg

For Example

We have the following
The efficient frontier is the curve that shows all efficient portfolios in a
risk-return framework:

1 An efficient portfolio is defined as the portfolio that maximizes the
expected return for a given amount of risk (standard deviation).

2 The portfolio that minimizes the risk subject to a given expected
return.

14 / 124



Images/cinvestav.jpg

For Example

We have the following
The efficient frontier is the curve that shows all efficient portfolios in a
risk-return framework:

1 An efficient portfolio is defined as the portfolio that maximizes the
expected return for a given amount of risk (standard deviation).

2 The portfolio that minimizes the risk subject to a given expected
return.

14 / 124



Images/cinvestav.jpg

We need a little bit of notation

We have
C0 capital that can be invested
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Rp total portfolio return
µp expected portfolio return
σ2

p variance of portfolio return
r vector rate of return on assets
µ vector expected rate of return on assets
θ vector amount invested at each asset
Σ = [σij ] matrix of covariances of returns r
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Then, we have

The following equalities
Cend = C0 +Rp

Rp = rT θ

µp = µT θ

σ2
p = θ2Σθ
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First, the expected return must be fixed, because we are minimizing
the risk given this return

µT θ = µp

The second constraint is that we can only invest the capital we have

1T θ = C0
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We have that

A =
[
µ 1

]
and B =

[
µp

C0

]

We have that we can rewrite our problem as

min
{
θT Σθ|AT θ = B

}
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A large effort has gone into developing algorithms for:

Solving various classes of optimization problems,
Analyzing their properties,
Developing good software implementations.

Our ability to solve the optimization problems
It varies considerably, depending on factors such as

Particular forms of the objective function
Particular forms of the constraint functions
How many variables and constraints there are
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Observation
we describe two very widely known and used special sub-classes of convex
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Least-Squares Problems
Linear Programming
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Least-Squares Error (LSE)

A least-squares problem is an optimization problem with no
constraints

min f0 (x) =
k∑

i=1

(
aT

i x− bi

)2
= ‖Ax− b‖22

Remember the Solution

x =
(
ATA

)−1
ATb

The least-squares problem can be solved in a time approximately
proportional

O
(
n2k

)

25 / 124



Images/cinvestav.jpg

Least-Squares Error (LSE)

A least-squares problem is an optimization problem with no
constraints

min f0 (x) =
k∑

i=1

(
aT

i x− bi

)2
= ‖Ax− b‖22

Remember the Solution

x =
(
ATA

)−1
ATb

The least-squares problem can be solved in a time approximately
proportional

O
(
n2k

)

25 / 124



Images/cinvestav.jpg

Least-Squares Error (LSE)

A least-squares problem is an optimization problem with no
constraints

min f0 (x) =
k∑

i=1

(
aT

i x− bi

)2
= ‖Ax− b‖22

Remember the Solution

x =
(
ATA

)−1
ATb

The least-squares problem can be solved in a time approximately
proportional

O
(
n2k

)

25 / 124



Images/cinvestav.jpg

Something Notable

In many cases we can solve even larger least-squares problems
Exploiting a special property of the problem

What if A is sparse?
It has far fewer than kn nonzero entries.

It is possible
To accelerate the solution of the LSE Problem
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Regularization

Observation
Most of the inverse problems posed in science and engineering areas are ill
posed.

Basically if you have Ax = b how do you find x?

Examples
Computational vision (Poggio, Torre, & Koch, 1985; Bertero, Pog-
gio, & Torre, 1988),
System identification (Akaike, 1974; Johansen, 1997),
Nonlinear dynamic reconstruction (Haykin, 1999),
Density estimation (Vapnik, 1998a)
etc
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(hw (xi)− yi)2

We can then run one of our machine to see what minimize better the
previous equation
Question: Did you notice that I did not impose any structure to hw (x)?
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(hw (xi)− yi)2

What about integrating those values to the cost function? Ideas
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We can do the same for the other parameters

min
w
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(hw (xi)− yi)2 +
d∑

i=1
λiw

2
i (1)

However handling such many parameters can be so difficult
Combinatorial problem in reality!!!
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What about Thousands of Features?

There is a technique for that
Least Absolute Shrinkage and Selection Operator (LASSO) invented by
Robert Tibshirani that uses L1 =
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i=1 |wi|.

The Least Squared Error takes the form of
N∑
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(
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)2
+

d∑
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|wi| (3)

However

You have other regularizations as L2 =
√∑d

i=1 |wi|2
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The first area correspond to the L1 regularization and the second one?
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Convex sets
Definition
A set C is convex if the line segment between any two points in C lies in
C, i.e. if for any x1,x2 ∈ C and any λ ∈ [0, 1]

λx1 + (1− λ)x2 ∈ C

Additionally
We call a point of the form

λ1x1 + ...+ λnxn

a convex combination of points {x1, ...,xn} with
∑n

i=1 λi = 1 and λi ≥ 0

Denoted

conv C = {λ1x1 + ...+ λnxn|xi ∈ C
λi ∈ C and

∑n
i=1 λi=1}
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It is more

Something Notable
It can be shown that a set is convex if and only if it contains every convex
combination of its points.

Property
If B is any convex set that contains C, then conv C ⊆ B.
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Convexity is preserved under intersection:

if S1 and S2 are convex, then S1 ∩ S2 is convex.

Affine Transformation
If C is a convex set, C ⊆ Rn, A ∈ Rm×n, b ∈ Rm, then

AC + b = {Ax+ b|x ∈ C} ⊆ Rm
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Further
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C + b, αC
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Convex function
A function f : Rn → R is convex if dom(f) is a convex set and
if∀x,y ∈ dom(f), ∀θ ∈ [0, 1], we have:

f (θx+ (1− θ)y) ≤ θf (x) + (1− θ) f (y)

Something Notable
The epigraph of a function f : Rn → R is the set of points:

epi (f) = {(x, t) |x ∈ dom (f) , t ≥ f (x)}
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The function f is convex if and only if the set epi (f) is convex

Proof
Quite simple...
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Zeroth Order Property

Theorem
f is convex if and only if ∀x ∈ dom (f), ∀u, the function

g (t) = f (x+ tu)

is convex when restricted to the domain {t|x+ tu ∈ dom (f)}

Proof
Look at the board
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Remark

This property is useful
Checking the convexity of a multivariate function reduces to check the
convexity of a univariate function.

Example
1 A 3D convex cup-shaped function
2 Taking any point x on the dom (f)
3 Taking a vertical slice through the point x
4 The resulting plane intersects the domain of f on a line, x+ tu

5 Generating a new 2D function g (t)

How does this look like?
Look at the board
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Suppose f is differentiable

Theorem
Then f is convex if and only if dom (f) is convex and

f (y) ≥ f (x) +∇f (x)T (y − x)

holds for all x, y ∈ dom (f) .

Then
The inequality shows that from local information about a convex
function (derivative and value at a point).
we can derive global information (global underestimator of it).
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Minimizing a Convex Function

We have the following situation
Let f : Rn → R and consider the problem to minimize f(x) subject
to x ∈ S.
A point x ∈ S is called a feasible solution to the problem.
If f (x) ≥ f (x̄) for each x ∈ S, x̄ is called an optimal solution.
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Specifically

if ∇f (x) = 0

f (y) ≥ f (x) +∇f (x)T (y − x) = f (x)

Therefore
x is a global minimizer of the function f .
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Proof

Let f : Rn → R be convex

g (t) = f (ty + (1− x)x)

Then, this function is convex and

g (t) = ∇f (ty + (1− t)x)T (y − x)

We have the following

g (αt1 + (1− α) t2) = g (t2 + α (t1 − t2)) ≤ αg (t1) + (1− α) g (t2)
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Rearranging Terms

We have

g (t1) ≥ g (t2) + g (t2 + α (t1 − t2))− g (t2)
α

Making α −→ 0

g (t1) ≥ g (t2) + g′ (t2) (t1 − t2)

Then g (1) ≥ g (0) + g′ (0)

f (y) ≥ f (x) +∇f (x)T (y − x)
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The other part of the proof

I leave you the part

f (y) ≥ f (x) +∇f (x)T (y − x) =⇒ f is convex
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Here, we assume
If f is twice differentiable
The Hessian exist!!!

Definition
Given a function f : Rn −→ R, then the Jacobian of the derivatives

∂f

∂x1
,
∂f

∂x2
, ...,

∂f

∂xn

is called the Hessian Matrix H

I.e.

Hf =



∂2f
∂x2

1

∂2f
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· · · ∂2f
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Let f be a twice differentiable function on an open domain dom(f). The
f is convex if and only if dom(f) is convex and its Hessian is positive
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For example
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Which means that the first derivative f ′ (x) is non-decreasing.
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How

We have

h′′ (x) = [g (f (x))]′′

Then

h′′ (x) =
[
g′ (f (x)) f ′ (x)

]′ = (
g′′ (f (x))

) [
f ′ (x)

]2 + g′ (f (x)) f ′′ (x) ≥ 0

Because
If f , g are convex than g′′(f(x)) and f ′′(x) are both ≥ 0
if g is non-decreasing, g′(f(x)) is also ≥ 0
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Local Search
Algorithm that explores the search space of possible solutions in sequential
fashion, moving from a current state to a "nearby" one.

Why is this important?
Set of configurations may be too large to be enumerated explicitly.
Might there not be a polynomial time algorithm for finding the
maximum of the problem efficiently.

I Thus local improvements can be a solution to the problem
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It keeps track of single current state
It move only to neighboring states

Advantages
It uses very little memory
It can often find reasonable solutions in large or infinite (continuous)
state spaces
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Example

Consider the following hypothetical problem
1 x =sales price of Intel’s newest chip (in $1000’s of dollars)
2 f (x) =profit per chip when it costs $1000.00 dollars

Assume that Intel’s marketing research team has found that the profit
per chip (as a function of x) is

f (x) = x2 − x3

Assume
we must have x non-negative and no greater than one in percentage.
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Maximization
Objective function is profit f (x) that needs to be maximized.

Thus
Solution to the optimization problem will be the optimum chip sales price.
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Important Notes about Optimization Problems

What we want
We are interested in knowing those points x ∈ D ⊆ Rn such that
f (x0) ≤ f (x) of f (x0) ≥ f (x)

Or
A minimum or a maximum point x0.

The process of finding x0

It is a search process using certain properties of the function.
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Thus

Local vs Global Minimum/Maximum
Local minimum/maximum is the minimum/maximum in a
neighborhood L ⊂ D.
Global minimum/maximum is the lowest value of f for all x ∈ D

I it is usually much harder to find.

Examples of minimums
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Furthermore

Something Notable
Optimization is a very difficult problem in general.

Especially when x is high dimensional, unless f is simple (e.g. linear)
and known analytically.

We have this classification
1 Analytical methods - They work fine when f can be handled in an

analytical way.
2 Numerical methods - Here, we use inherent properties of the function

like the rate of change of the function.

In our case
We will look at the Gradient Descent Method!!!
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Analytical Method: Differentiating
Assume f is known analytically and twice differentiable
The critical points of f , i.e. the points of potential maximum or minimum,
can be found using the equation:

df

dx
= 0 (4)

For example
df (x)
dx

= d
[
x2 − x3]
dx

= 2x− 3x2 = 0

Finding the roots x1, x2, ..., xk

x = 2
3
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We have the following
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Do we have a Maximum or a Minimum

Second Derivative Test
The sign of the second derivative tells if each of those points is a
maximum or a minimum:

1 If d2f(xi)
dx2 > 0 for x = xithen xi is a minimum.

2 If d2f(xi)
dx2 < 0 for x = xithen xi is a maximum.
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Example

In our case
d2f (x)
dx2 = 2− 6x

Then
d2f

(
2
3

)
dx2 = 2− 6× 2

3 = 2− 4 = −2

Maximum Profit for the $1000.00 dollar Chip

$667.00
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What if d2f(xi)
dx2 = 0?

Question
If the second derivative is 0 in a critical point xi, then xi may or may not
be a minimum or a maximum of f . WHY?

We have for x3 − 3x2 + x− 2
With derivative

d2f (x)
dx2 = 6x− 6
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Actually a point where d2f(xi)
dx2 = 0

We have a change in the “curvature u d2f(x)
dx2 ”
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Properties of Differentiating

Generalization
To move to higher dimensional functions, we will require to take partial
derivatives!!!

Solving
A system of equations!!!

Remark
For a bounded D the only possible points of maximum/minimum are
critical or boundary ones, so, in principle, we can find the global extremum.
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Problems

A lot of them
Potential problems include transcendent equations, not solvable
analytically.
High cost of finding derivatives, especially in high dimensions (e.g. for
neural networks)

Thus
Partial Solution of the problems comes from a numerical technique called
the gradient descent
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Numerical Method: Gradient Descent

Imagine the following
f is a smooth objective function.
Now you have a x0 state and you need to find the next one.

Something Notable
We want to find x in the neighborhood D of x0 such that

f (x) < f (x0)
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Taylor’s Expansion

Using the first order Taylor’s expansion around point x ∈ Rn for
f : Rn → R

f (x) = f (x0) +∇f (x0)T · (x− x0) +O
(
‖x− x0‖2

)

Note: Actually the Taylor’s expansions are polynomial
approximation to the function!!!
∇f (x) =

[
∂f(x)
∂x1

, ∂f(x)
∂x2

, ..., ∂f(x)
∂xn

]T
with

x = (x1, x2, ..., xn)T

If we can find a neighborhood D small enough
We can discard the terms of the second and higher orders because the
linear approximation is enough!!!

93 / 124



Images/cinvestav.jpg

Taylor’s Expansion

Using the first order Taylor’s expansion around point x ∈ Rn for
f : Rn → R

f (x) = f (x0) +∇f (x0)T · (x− x0) +O
(
‖x− x0‖2

)

Note: Actually the Taylor’s expansions are polynomial
approximation to the function!!!
∇f (x) =

[
∂f(x)
∂x1

, ∂f(x)
∂x2

, ..., ∂f(x)
∂xn

]T
with

x = (x1, x2, ..., xn)T

If we can find a neighborhood D small enough
We can discard the terms of the second and higher orders because the
linear approximation is enough!!!
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How do we do this?
Simple

x = x0 + hu

where x0 and u are vectors and h is a constant.

Then we get

f (x0 + hu)− f (x0) = h∇f (x0)T · u+ h2O (1)

We make h2 term insignificant by shrinking h
Thus, if we want to decrease f (x0 + hu)− f (x0) < 0 the fastest,
enforcing f (x0 + hu) < f (x0):

f (x0 + hu)− f (x0) ≈ h∇f (x0)T · u
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Then

We minimize

∇f (x0)T · u

Thus, the unit vector that minimize
In order to obtain the largest difference

u = − ∇f (x0)
‖∇f (x0)‖

Then

∇f (x0)T ×− ∇f (x0)
‖∇f (x0)‖ = −‖∇f (x0)‖ < 0
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Therefore

We have that

x = x0 + hu

= x0 − h
∇f (x0)
‖∇f (x0)‖

= x0 − h′∇f (x0)

With h′ = h
‖∇f(x0)‖
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Gradient Descent

In the method of Gradient descent, we have a cost function J (w)
where

w (n+ 1) = w (n)− η∇J (w (n))

How, we prove that J (w (n+ 1)) < J (w (n))?
We use the first-order Taylor series expansion around w (n)

J (w (n+ 1)) ≈ J (w (n)) +∇JT (w (n)) ∆w (n) (5)

Remark: This is quite true when the step size is quite small!!! In
addition, ∆w (n) = w (n+ 1)−w (n)
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Why? Look at the case in R

The equation of the tangent line to the curve y = J (w (n))

L (w (n)) = J ′ (w (n)) [w (n+ 1)− w (n)] + J (w (n)) (6)

Example
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Thus, we have that in R

Remember Something quite Classic

tan θ =J (w (n+ 1))− J (w (n))
w (n+ 1)− w (n)

tan θ (w (n+ 1)− w (n)) =J (w (n+ 1))− J (w (n))
J ′ (w (n)) (w (n+ 1)− w (n)) = J (w (n+ 1))− J (w (n))
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Thus, we have that

Using the First Taylor expansion

J (w (n)) ≈ J (w (n)) + J ′ (w (n)) [w (n+ 1)− w (n)] (7)

101 / 124



Images/cinvestav.jpg

Now, for Many Variables

An hyperplane in Rn is a set of the form

H =
{
x|aTx = b

}
(8)

Given x ∈ H and x0 ∈ H

b = aTx = aTx0

Thus, we have that

H =
{
x|aT (x− x0) = 0

}
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Thus, we have the following definition

Definition (Differentiability)
Assume that J is defined in a disk D containing w (n). We say that J is
differentiable at w (n) if:

1 ∂J(w(n))
∂wi

exist for all i = 1, ..., n.
2 J is locally linear at w (n).
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Thus, given J (w (n))

We know that we have the following operator

∇ =
(

∂

∂w1
,
∂

∂w2
, ...,

∂

∂wm

)
(9)

Thus, we have

∇J (w (n)) =
(
∂J (w (n))

∂w1
,
∂J (w (n))

∂w2
, ...,

∂J (w (n))
∂wm

)
=

m∑
i=1

ŵi
∂J (w (n))

∂wi

Where: ŵT
i = (1, 0, ..., 0) ∈ R
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Now

Given a curve function r (t) that lies on the level set J (w (n)) = c
(When is in R3)
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Level Set

Definition

{(w1, w2, ..., wm) ∈ Rm|J (w1, w2, ..., wm) = c} (10)

Remark: In a normal Calculus course we will use x and f instead of w
and J .
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Where
Any curve has the following parametrization

r : [a, b]→ Rm

r(t) = (w1 (t) , ..., wm (t))

With r(n+ 1) = (w1 (n+ 1) , ..., wm (n+ 1))

We can write the parametrized version of it

z(t) = J (w1 (t) , w2 (t) , ..., wm (t)) = c (11)

Differentiating with respect to t and using the chain rule for multiple
variables

dz(t)
dt

=
m∑

i=1

∂J (w (t))
∂wi

· dwi(t)
dt

= 0 (12)
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Note

First
Given y = f (u) = (f1 (u) , ..., fl (u)) and
u = g (x) = (g1 (x) , ..., gm (x)).

We have then that
∂ (f1, f2, ..., fl)
∂ (x1, x2, ..., xk) = ∂ (f1, f2, ..., fl)

∂ (g1, g2, ..., gm) ·
∂ (g1, g2, ..., gm)
∂ (x1, x2, ..., xk) (13)

Thus
∂ (f1, f2, ..., fl)

∂xi
= ∂ (f1, f2, ..., fl)
∂ (g1, g2, ..., gm) ·

∂ (g1, g2, ..., gm)
∂xi

=
m∑

k=1

∂ (f1, f2, ..., fl)
∂gk

∂gk

∂xi
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Thus

Evaluating at t = n
m∑

i=1

∂J (w (n))
∂wi

· dwi(n)
dt

= 0

We have that

∇J (w (n)) · r′ (n) = 0 (14)

This proves that for every level set the gradient is perpendicular to
the tangent to any curve that lies on the level set
In particular to the point w (n).
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Now the tangent plane to the surface can be described
generally

Thus
L (w (n+ 1)) = J (w (n)) +∇JT (w (n)) [w (n+ 1)−w (n)] (15)

This looks like
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Proving the fact about the Gradient Descent

We want the following

J (w (n+ 1)) < J (w (n))

Using the first-order Taylor approximation

J (w (n+ 1))− J (w (n)) ≈ ∇JT (w (n)) ∆w (n)

So, we ask the following

∆w (n) ≈ −η∇J (w (n)) with η > 0
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Then

We have that

J (w (n+ 1))− J (w (n)) ≈ −η∇JT (w (n))∇J (w (n)) = −η ‖∇J (w (n))‖2

Thus

J (w (n+ 1))− J (w (n)) < 0

Or

J (w (n+ 1)) < J (w (n))
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Algorithm of Gradient Descent

Initialization
1 Guess an init point x0
2 Use a Nmax iteration count
3 A gradient norm tolerance εg to know if we have arrived to a critical

point.
4 A step tolerance εx to know if we have done significant progress
5 αt is known as the step size.

1 It is chosen to maintain a balance between convergence speed and
avoiding divergence.
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Finally

Gradient_Descent(x0, Nmax, εg, εt, αt)
1 for t = 0, 1, 2, ..., Nmax

2 xt+1 = xt − αt∇f (xt)
3 if ‖∇f (xt+1)‖ < εg

4 return “Converged on critical point”
5 if ‖xt − xt+1‖ < εt

6 return “Converged on an x value”
7 if f (xt+1) > f (xt)
8 return “Diverging”
9 return “Maximum number of iterations reached”
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Observations
Gradient descent can only work if at least we can differentiate the
cost function
Gradient descent gets bottled up in local minima or maxima
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Gradient Descent

The basic procedure is as follow
1 Start with a random weight vector w (1).
2 Compute the gradient vector ∇J (w (1)).
3 Obtain value w (2) by moving from w (1) in the direction of the

steepest descent:

w (k + 1) = w (k)− η (k)∇J (w (k)) (16)

η (k) is a positive scale factor or learning rate!!!
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Algorithm

Gradient Decent
1 Initialize w, criterion θ, η (·), k = 0
2 do k = k + 1
3 w (k) = w (k − 1)− η (k)∇J (w (k − 1))
4 until η (k)∇J (w (k)) < θ

5 return w

Problem!!! How to choose the learning rate?
If η (k) is too small, convergence is quite slow!!!
If η (k) is too large, correction will overshot and can even diverge!!!

124 / 124



Images/cinvestav.jpg

Algorithm

Gradient Decent
1 Initialize w, criterion θ, η (·), k = 0
2 do k = k + 1
3 w (k) = w (k − 1)− η (k)∇J (w (k − 1))
4 until η (k)∇J (w (k)) < θ

5 return w

Problem!!! How to choose the learning rate?
If η (k) is too small, convergence is quite slow!!!
If η (k) is too large, correction will overshot and can even diverge!!!

124 / 124



Images/cinvestav.jpg

Algorithm

Gradient Decent
1 Initialize w, criterion θ, η (·), k = 0
2 do k = k + 1
3 w (k) = w (k − 1)− η (k)∇J (w (k − 1))
4 until η (k)∇J (w (k)) < θ

5 return w

Problem!!! How to choose the learning rate?
If η (k) is too small, convergence is quite slow!!!
If η (k) is too large, correction will overshot and can even diverge!!!

124 / 124



Images/cinvestav.jpg

Algorithm

Gradient Decent
1 Initialize w, criterion θ, η (·), k = 0
2 do k = k + 1
3 w (k) = w (k − 1)− η (k)∇J (w (k − 1))
4 until η (k)∇J (w (k)) < θ

5 return w

Problem!!! How to choose the learning rate?
If η (k) is too small, convergence is quite slow!!!
If η (k) is too large, correction will overshot and can even diverge!!!

124 / 124



Images/cinvestav.jpg

Algorithm

Gradient Decent
1 Initialize w, criterion θ, η (·), k = 0
2 do k = k + 1
3 w (k) = w (k − 1)− η (k)∇J (w (k − 1))
4 until η (k)∇J (w (k)) < θ

5 return w

Problem!!! How to choose the learning rate?
If η (k) is too small, convergence is quite slow!!!
If η (k) is too large, correction will overshot and can even diverge!!!

124 / 124



Images/cinvestav.jpg

Algorithm

Gradient Decent
1 Initialize w, criterion θ, η (·), k = 0
2 do k = k + 1
3 w (k) = w (k − 1)− η (k)∇J (w (k − 1))
4 until η (k)∇J (w (k)) < θ

5 return w

Problem!!! How to choose the learning rate?
If η (k) is too small, convergence is quite slow!!!
If η (k) is too large, correction will overshot and can even diverge!!!

124 / 124



Images/cinvestav.jpg

Algorithm

Gradient Decent
1 Initialize w, criterion θ, η (·), k = 0
2 do k = k + 1
3 w (k) = w (k − 1)− η (k)∇J (w (k − 1))
4 until η (k)∇J (w (k)) < θ

5 return w

Problem!!! How to choose the learning rate?
If η (k) is too small, convergence is quite slow!!!
If η (k) is too large, correction will overshot and can even diverge!!!

124 / 124


	Introduction
	History
	Mathematical Optimization
	Family of Optimization Problems
	Example Portfolio Optimization 
	Solving Problems
	Least-Squares Error and Regularization

	Convex Sets
	Convex Sets
	Functions Preserving Convexity

	Convex Functions
	Introduction
	Detecting Convexity
	Convexity preserving operations

	Introduction
	Why do we want to use optimization?

	Gradient Descent
	Introduction
	Notes about Optimization
	Numerical Method: Gradient Descent
	Properties of the Gradient Descent
	Gradient Descent Algorithm

	Linear Regression using Gradient Descent
	Introduction
	What is the Gradient of the Equation?
	The Basic Algorithm


