Introduction to Artificial Intelligence Linear Algebra

Andres Mendez-Vazquez

January 16, 2020

Outline

Introduction
O Why and What?

- A Little Bit of History

Matrices and Gaussian Elimination

- Introduction
- The Geometry of Linear Equations - Example
- Column Vectors and Linear Combinations
- The Singular Case
- An Example of Gaussian Elimination
- Fixing some problems of Singularity
- The Cost Of Elimination
- Convert Everything into Matrix Multiplications
- Example of Using Elementary Matrices
(3) Vector Space
- Introduction
- Classic Example, The Matrix Space $\mathbb{R}^{n \times m}$
- Some Notes in Notation
- Sub-spaces and Linear Combinations
- Recognizing Sub-spaces
- Linear Combinations
- Spanned Space

Basis and Dimensions

- Basis
- Coordinates
- Basis and Dimensions
(5) Fundamental Spaces
- Introduction
- Examples Using a Specific Matrix
- Fundamental Theorem of Linear Algebra
- Existence of Inverses
- A Little Bit of History

2 Matrices and Gaussian Elimination

- Introduction
- The Geometry of Linear Equations
- Column Vectors and Linear Combinations
- The Singular Case
- An Example of Gaussian Elimination
- Fixing some problems of Singularity
- The Cost Of Elimination
- Convert Everything into Matrix Multiplications
- Example of Using Elementary Matrices

3 Vector Space

- Introduction
- Classic Example, The Matrix Space $\mathbb{R}^{n \times m}$
- Some Notes in Notation
- Sub-spaces and Linear Combinations
- Recognizing Sub-spaces
- Linear Combinations
- Spanned Space

4 Basis and Dimensions

- Basis
- Coordinates
- Basis and Dimensions

5) Fundamental Spaces

- Introduction
- Examples Using a Specific Matrix
- Fundamental Theorem of Linear Algebra
- Existence of Inverses

Introduction

What is this class about?

- It is clear that the use of mathematics is essential for Artificial Intelligence.

Introduction

What is this class about?

- It is clear that the use of mathematics is essential for Artificial Intelligence.

Therefore...

- The understanding of Mathematical Modeling is part of the deal...

Introduction

What is this class about?

- It is clear that the use of mathematics is essential for Artificial Intelligence.

Therefore...

- The understanding of Mathematical Modeling is part of the deal...

If you want to be

- A Good Practitioner of Artificial Intelligence!!!

Example

Imagine

A web surfer moves from a web page to another web page...

- Question: How do you model this?

Example

Imagine

A web surfer moves from a web page to another web page...

- Question: How do you model this?

You can use a graph!!!

Now

Add Some Probabilities

Thus

We can build a matrix

$$
M=\left(\begin{array}{cccc}
P_{11} & P_{12} & \cdots & P_{1 N} \tag{1}\\
P_{21} & P_{22} & \cdots & P_{2 N} \\
\vdots & \vdots & \ddots & \vdots \\
P_{N 1} & P_{N 2} & \cdots & P_{N N}
\end{array}\right)
$$

Thus

We can build a matrix

$$
M=\left(\begin{array}{cccc}
P_{11} & P_{12} & \cdots & P_{1 N} \tag{1}\\
P_{21} & P_{22} & \cdots & P_{2 N} \\
\vdots & \vdots & \ddots & \vdots \\
P_{N 1} & P_{N 2} & \cdots & P_{N N}
\end{array}\right)
$$

Thus, it is possible to obtain certain information by looking at the eigenvector and eigenvalues
These vectors $\boldsymbol{v}_{\lambda}^{\prime} s$ and values $\lambda^{\prime} s$ have the property that

$$
\begin{equation*}
M \boldsymbol{v}_{\lambda}=\lambda \boldsymbol{v}_{\lambda} \tag{2}
\end{equation*}
$$

This is the Basis of Page Rank in Google

Imagine a small Web!!! Really Small...

This is the Basis of Page Rank in Google
Imagine a small Web!!! Really Small...

We have the following Stochastic Matrix

$$
\boldsymbol{P}=\left(\begin{array}{ccc}
1-p & 1-p & 0 \tag{3}\\
p(1-p) & p(1-p) & 1-p \\
p^{2} & p^{2} & p
\end{array}\right)
$$

Therefore, we can use that

To describe the transition in the Markov Chain
Let $\boldsymbol{p}_{t} \in \mathbb{R}^{n}$ is the distribution matrix of X_{t} at time t

$$
\begin{equation*}
\left(\boldsymbol{p}_{t}\right)_{i}=P\left(X_{t}=i\right) \tag{4}
\end{equation*}
$$

Therefore, we can use that

To describe the transition in the Markov Chain

Let $\boldsymbol{p}_{t} \in \mathbb{R}^{n}$ is the distribution matrix of X_{t} at time t

$$
\begin{equation*}
\left(\boldsymbol{p}_{t}\right)_{i}=P\left(X_{t}=i\right) \tag{4}
\end{equation*}
$$

Then moving from a distribution to another one we have

$$
\begin{equation*}
\boldsymbol{p}_{t+1}=\boldsymbol{P} \boldsymbol{p}_{t} \tag{5}
\end{equation*}
$$

Here, the Idea of Positive Matrix

Basic Definition

- A matrix is called positive if all its entries are positive.

Here, the Idea of Positive Matrix

Basic Definition

- A matrix is called positive if all its entries are positive.
- Non-negative, if all its entries are non-negative.

Here, the Idea of Positive Matrix

Basic Definition

- A matrix is called positive if all its entries are positive.
- Non-negative, if all its entries are non-negative.

Basic Facts

If $A \geq 0$ (Element wise) with $A \in \mathbb{R}^{n \times n}$ and $z \geq 0$ with $z \in \mathbb{R}^{n}$, then $A z \geq 0$

Here, the Idea of Positive Matrix

Basic Definition

- A matrix is called positive if all its entries are positive.
- Non-negative, if all its entries are non-negative.

Basic Facts

If $A \geq 0$ (Element wise) with $A \in \mathbb{R}^{n \times n}$ and $z \geq 0$ with $z \in \mathbb{R}^{n}$, then $A z \geq 0$

- Matrix Multiplication preserves non-negativity!!!

Here, the Idea of Positive Matrix

Basic Definition

- A matrix is called positive if all its entries are positive.
- Non-negative, if all its entries are non-negative.

Basic Facts

If $A \geq 0$ (Element wise) with $A \in \mathbb{R}^{n \times n}$ and $z \geq 0$ with $z \in \mathbb{R}^{n}$, then $A z \geq 0$

- Matrix Multiplication preserves non-negativity!!!

Regularity

Given $A \in \mathbb{R}^{n \times n}$ with $A \geq 0$, then A is called regular if some $k \geq 1$, $A^{k}>0$.

Path Property

Meaning of the Previous Definition

From a directed graph on nodes $1, \ldots, n$ with an arc from i to j whenever $A_{i j} \geq 0$ then

Path Property

Meaning of the Previous Definition

From a directed graph on nodes $1, \ldots, n$ with an arc from i to j whenever $A_{i j} \geq 0$ then

- $\left(A^{k}\right)_{i j}>0$ if and only if there is a path of length k from i to j.

Path Property

Meaning of the Previous Definition

From a directed graph on nodes $1, \ldots, n$ with an arc from i to j whenever $A_{i j} \geq 0$ then

- $\left(A^{k}\right)_{i j}>0$ if and only if there is a path of length k from i to j.

Something Notable

A is regular if for some k there is a path of length k from every node to every other node.

Perron-Frobenius Theorem for Regular Matrices

Theorem

Suppose $A \in \mathbb{R}^{n \times n}$ is nonnegative and regular, i.e., $A^{k}>0$ for some k .

Perron-Frobenius Theorem for Regular Matrices

Theorem

Suppose $A \in \mathbb{R}^{n \times n}$ is nonnegative and regular, i.e., $A^{k}>0$ for some k .

Then
(1) There is an eigenvalue $\lambda_{p f}$ of A that is real and positive, with positive left and right eigenvectors.

Perron-Frobenius Theorem for Regular Matrices

Theorem

Suppose $A \in \mathbb{R}^{n \times n}$ is nonnegative and regular, i.e., $A^{k}>0$ for some k .

Then

(1) There is an eigenvalue $\lambda_{p f}$ of A that is real and positive, with positive left and right eigenvectors.
(2) For any other eigenvalue λ, we have $|\lambda|<\lambda_{p f}$.

Perron-Frobenius Theorem for Regular Matrices

Theorem

Suppose $A \in \mathbb{R}^{n \times n}$ is nonnegative and regular, i.e., $A^{k}>0$ for some k .

Then

(1) There is an eigenvalue $\lambda_{p f}$ of A that is real and positive, with positive left and right eigenvectors.
(2) For any other eigenvalue λ, we have $|\lambda|<\lambda_{p f}$.
(3) The eigenvalue $\lambda_{p f}$ is simple, i.e., has multiplicity one, and corresponds to a 1×1 Jordan block.

Now, given our matrix \boldsymbol{P}

Given \boldsymbol{P} a stochastic matrix

- Let π a Perron-Frobenius right eigenvector of P with $\pi \geq 0$ and $1^{T} \pi=1$.

Now, given our matrix \boldsymbol{P}

Given P a stochastic matrix

- Let π a Perron-Frobenius right eigenvector of P with $\pi \geq 0$ and $1^{T} \pi=1$.

Such that $P \pi=\pi$

- Then π corresponds to an invariant distribution or equilibrium distribution of the Markov chain for the eigenvalue 1.

Now, given our matrix \boldsymbol{P}

Given \boldsymbol{P} a stochastic matrix

- Let π a Perron-Frobenius right eigenvector of P with $\pi \geq 0$ and $1^{T} \pi=1$.

Such that $P \pi=\pi$

- Then π corresponds to an invariant distribution or equilibrium distribution of the Markov chain for the eigenvalue 1.

Assume that

- That \boldsymbol{P} is regular then i.e. that for some $k \boldsymbol{P}^{k}>0$.

Thus

If we can force P to be regular

- There is unique distribution π such that $\pi>0$.

Thus

If we can force \boldsymbol{P} to be regular

- There is unique distribution π such that $\pi>0$.

Something Notable

- The eigenvalue 1 is simple and dominant.
- Thus, we have $\boldsymbol{p}_{t} \rightarrow \pi$ no matter what the initial distribution p_{0}

Thus, a Simple Algorithms

We have a simple method

- Repeatedly apply $\boldsymbol{p}_{t+1}=\boldsymbol{P} \boldsymbol{p}_{t}$ until convergence to π.

Thus, a Simple Algorithms

We have a simple method

- Repeatedly apply $\boldsymbol{p}_{t+1}=\boldsymbol{P} \boldsymbol{p}_{t}$ until convergence to π.

This is a method called

- The Power Method

Thus, a Simple Algorithms

We have a simple method

- Repeatedly apply $\boldsymbol{p}_{t+1}=\boldsymbol{P} \boldsymbol{p}_{t}$ until convergence to π.

This is a method called

- The Power Method

Naive and expensive but

- Stable!!!

Outline

Introduction

- Why and What?
- A Little Bit of History
(2) Matrices and Gaussian Elimination
- Introduction
- The Geometry of Linear Equations
- Example
- Column Vectors and Linear Combinations
- The Singular Case
- An Example of Gaussian Elimination
- Fixing some problems of Singularity
- The Cost Of Elimination
- Convert Everything into Matrix Multiplications
- Example of Using Elementary Matrices
(3) Vector Space
- Introduction
- Classic Example, The Matrix Space $\mathbb{R}^{n \times m}$
- Some Notes in Notation
- Sub-spaces and Linear Combinations
- Recognizing Sub-spaces
- Linear Combinations
- Spanned Space

4 Basis and Dimensions

- Basis
- Coordinates
- Basis and Dimensions
(5) Fundamental Spaces
- Introduction
- Examples Using a Specific Matrix
- Fundamental Theorem of Linear Algebra
- Existence of Inverses

About 4000 years ago

Babylonians knew how to solve the following kind of systems

$$
\begin{aligned}
& a x+b y=c \\
& d x+e y=f
\end{aligned}
$$

About 4000 years ago

Babylonians knew how to solve the following kind of systems

$$
\begin{aligned}
a x+b y & =c \\
d x+e y & =f
\end{aligned}
$$

As always the first steps in any field of knowledge tend to be slow
It is only after the death of Plato and Aristotle, that the Chinese (Nine Chapters of the Mathematical Art 200 B.C.) were able to solve 3×3 system.

About 4000 years ago

Babylonians knew how to solve the following kind of systems

$$
\begin{aligned}
& a x+b y=c \\
& d x+e y=f
\end{aligned}
$$

As always the first steps in any field of knowledge tend to be slow
It is only after the death of Plato and Aristotle, that the Chinese (Nine Chapters of the Mathematical Art 200 B.C.) were able to solve 3×3 system.

By working an "elimination method"
Similar to the one devised by Gauss 2000 years later for general systems.

Not only that

The Matrix

Gauss defined implicitly the concept of a Matrix as linear transformations in his book "Disquisitions."

Not only that

The Matrix

Gauss defined implicitly the concept of a Matrix as linear transformations in his book "Disquisitions."

The Final Definition of Matrix

It was introduced by Cayley in two papers in 1850 and 1858 respectively, which allowed him to prove the important Cayley-Hamilton Theorem.

Not only that

The Matrix

Gauss defined implicitly the concept of a Matrix as linear transformations in his book "Disquisitions."

The Final Definition of Matrix
 It was introduced by Cayley in two papers in 1850 and 1858 respectively, which allowed him to prove the important Cayley-Hamilton Theorem.

There is quite a lot
Kleiner, I., A History of Abstract Algebra (Birkhäuser Boston, 2007).

Matrix can help to represent many things

They are important for many calculations as

$$
\begin{gathered}
a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n}=b_{2} \\
\ldots \ldots \ldots \ldots \ldots \ldots \ldots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots+a_{m n} x_{n}=b_{2}
\end{gathered}
$$

Matrix can help to represent many things

They are important for many calculations as

$$
\begin{gathered}
a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n}=b_{2} \\
\ldots \ldots \ldots \ldots \ldots \ldots \ldots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots+a_{m n} x_{n}=b_{2} .
\end{gathered}
$$

It is clear

We would like to collect those linear equations in a compact structure that allows for simpler manipulation.

Therefore, we have

For example

$$
\boldsymbol{x}=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right), \boldsymbol{b}=\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right) \text { and } A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right)
$$

Therefore, we have

For example

$$
\boldsymbol{x}=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right), \boldsymbol{b}=\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right) \text { and } A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right)
$$

Using a little of notation

$$
A \boldsymbol{x}=\boldsymbol{b}
$$

Furthermore

Many Times

- We use the concept of transpose a lot in many Linear Algebra Applications...

Furthermore

Many Times

- We use the concept of transpose a lot in many Linear Algebra Applications...

Definition

- The transpose of matrix A is an operation that flips the matrix over its diagonal. Formally, the $i^{t h}$ and $j^{\text {th }}$ column element of A is the $j^{t h}$ row and $i^{\text {th }}$ column element of A :

$$
\left[A^{T}\right]_{i j}=[A]_{j i}
$$

- If A is an $m \times n$ matrix, then A^{T} is an $n \times m$ matrix.

Outline

－Why and What？
－A Little Bit of History
（2）Matrices and Gaussian Elimination
－Introduction
－The Geometry of Linear Equations
－Example
－Column Vectors and Linear Combinations
－The Singular Case
－An Example of Gaussian Elimination
－Fixing some problems of Singularity
－The Cost Of Elimination
－Convert Everything into Matrix Multiplications
－Example of Using Elementary Matrices
（3）Vector Space
－Introduction
－Classic Example，The Matrix Space $\mathbb{R}^{n \times m}$
－Some Notes in Notation
－Sub－spaces and Linear Combinations
－Recognizing Sub－spaces
－Linear Combinations
－Spanned Space
（4）Basis and Dimensions
－Basis
－Coordinates
－Basis and Dimensions
（5）Fundamental Spaces
－Introduction
－Examples Using a Specific Matrix
－Fundamental Theorem of Linear Algebra
－Existence of Inverses

Solving Linear Equations

We have n equations in n unknowns

$$
\begin{aligned}
& 1 x+2 y=3 \\
& 4 x+5 y=6
\end{aligned}
$$

Solving Linear Equations

We have n equations in n unknowns

$$
\begin{aligned}
& 1 x+2 y=3 \\
& 4 x+5 y=6
\end{aligned}
$$

How do we solve this?

- We have two possibilities

Elimination

We can do the following

- Equation $2-4 \times$ Equation $1 \Longrightarrow-3 y=-6$

Elimination

We can do the following

- Equation $2-4 \times$ Equation $1 \Longrightarrow-3 y=-6$

Back-Substition

$$
\text { - } 1 x+2 \times 2=3 \Longrightarrow x=-1
$$

Elimination

We can do the following

- Equation $2-4 \times$ Equation $1 \Longrightarrow-3 y=-6$

Back-Substition

$$
\text { - } 1 x+2 \times 2=3 \Longrightarrow x=-1
$$

Therefore

$$
\begin{aligned}
& 1(-1)+2(2)=-3 \\
& 4(-1)+5(2)=6
\end{aligned}
$$

Determinants

There are a series of equations based on determinants

$$
\begin{aligned}
& y=\frac{\left|\begin{array}{ll}
1 & 3 \\
4 & 6
\end{array}\right|}{\left|\begin{array}{ll}
1 & 2 \\
4 & 5
\end{array}\right|}=\frac{1 \times 6-3 \times 4}{1 \times 5-2 \times 4}=\frac{-6}{-3}=2 \\
& x=\frac{\left|\begin{array}{ll}
3 & 2 \\
6 & 5
\end{array}\right|}{\left|\begin{array}{ll}
1 & 2 \\
4 & 5
\end{array}\right|}=\frac{3 \times 5-2 \times 6}{1 \times 5-2 \times 4}=\frac{3}{-3}=-1
\end{aligned}
$$

The Problem of Complexity

What if $n=1000$

- Using the determinant rule is catastrophic

The Problem of Complexity

What if $n=1000$

- Using the determinant rule is catastrophic

Given that the determinant ||

- You would have a million number to be used!!!

The Problem of Complexity

What if $n=1000$

- Using the determinant rule is catastrophic

Given that the determinant ||

- You would have a million number to be used!!!

Therefore

- We favor the Gaussian Elimination method!!!

Notably

We will see that

- This is the algorithm that is constantly used to solve large systems of equations.

Notably

We will see that

- This is the algorithm that is constantly used to solve large systems of equations.

However

- The idea of elimination is deceptively simple!!!
- You can master it after a few examples.

To understand this method deeply

We need to understand

(1) The Geometry of Linear Equations

To understand this method deeply

We need to understand

(1) The Geometry of Linear Equations
(2) Matrix Notation and Matrix Multiplication

To understand this method deeply

We need to understand

(1) The Geometry of Linear Equations
(2) Matrix Notation and Matrix Multiplication
(3) Understand the Singular Cases

To understand this method deeply

We need to understand

(1) The Geometry of Linear Equations
(2) Matrix Notation and Matrix Multiplication
(3) Understand the Singular Cases
(1) Number of Steps and Errors arising of the elimination

Outline

－Why and What？
－A Little Bit of History
（2）Matrices and Gaussian Elimination
－Introduction
－The Geometry of Linear Equations
－Example
－Column Vectors and Linear Combinations
－The Singular Case
－An Example of Gaussian Elimination
－Fixing some problems of Singularity
－The Cost Of Elimination
－Convert Everything into Matrix Multiplications
－Example of Using Elementary Matrices
（3）Vector Space
－Introduction
－Classic Example，The Matrix Space $\mathbb{R}^{n \times m}$
－Some Notes in Notation
－Sub－spaces and Linear Combinations
－Recognizing Sub－spaces
－Linear CombinationsSpanned Space
（4）Basis and Dimensions
－Basis
－Coordinates
－Basis and Dimensions
（5）Fundamental Spaces
－Introduction
－Examples Using a Specific Matrix
－Fundamental Theorem of Linear Algebra
－Existence of Inverses

Outline

－Why and What？
－A Little Bit of History
（2）Matrices and Gaussian Elimination
－Introduction
－The Geometry of Linear Equations

－Example

Column Vectors and Linear Combinations－The Singular Case
－An Example of Gaussian Elimination
－Fixing some problems of Singularity
－The Cost Of Elimination
－Convert Everything into Matrix Multiplications
－Example of Using Elementary Matrices
（3）Vector Space
－Introduction
－Classic Example，The Matrix Space $\mathbb{R}^{n \times m}$
－Some Notes in Notation
－Sub－spaces and Linear Combinations
－Recognizing Sub－spaces
－Linear Combinations
－Spanned Space
（4）Basis and Dimensions
－Basis
－Coordinates
－Basis and Dimensions
（5）Fundamental Spaces
－Introduction
－Examples Using a Specific Matrix
－Fundamental Theorem of Linear Algebra
－Existence of Inverses

Gaussian Elimination

Example

$$
\begin{array}{r}
2 x-y=1 \\
x+y=5
\end{array}
$$

Gaussian Elimination

Example

$$
\begin{array}{r}
2 x-y=1 \\
x+y=5
\end{array}
$$

We can look at that system by rows or by columns

- The first approach concentrates on the separate equations.

Gaussian Elimination

Example

$$
\begin{array}{r}
2 x-y=1 \\
x+y=5
\end{array}
$$

We can look at that system by rows or by columns

- The first approach concentrates on the separate equations.

The Rows

- We have equations $2 x-y=1$ and $x+y=5$.

Thus

We have

Now as columns of the linear systems

The two separate equations are really one vector equation

$$
x\left[\begin{array}{l}
2 \\
1
\end{array}\right]+y\left[\begin{array}{c}
-1 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
5
\end{array}\right]
$$

Thus, we have

As vectors

Now, if we move to $n=3$

Three Planes

$$
\begin{aligned}
2 u+v+w & =5 \\
4 u-6 v & =-2 \\
-2 u+7 v+2 w & =9
\end{aligned}
$$

We have

The row picture

Outline

- Why and What?
- A Little Bit of History
(2) Matrices and Gaussian Elimination
- Introduction
- The Geometry of Linear Equations
- Example
- Column Vectors and Linear Combinations
- The Singular Case
- An Example of Gaussian Elimination
- Fixing some problems of Singularity
- The Cost Of Elimination
- Convert Everything into Matrix Multiplications
- Example of Using Elementary Matrices
(3) Vector Space
- Introduction
- Classic Example, The Matrix Space $\mathbb{R}^{n \times m}$
- Some Notes in Notation
- Sub-spaces and Linear Combinations
- Recognizing Sub-spaces
- Linear CombinationsSpanned Space
4 Basis and DimensionsBasis
-

Coordinates

- Basis and Dimensions
(5) Fundamental Spaces
- Introduction
- Examples Using a Specific Matrix
- Fundamental Theorem of Linear Algebra
- Existence of Inverses

What about column representation

Then, we have

$$
u\left[\begin{array}{c}
2 \\
4 \\
-2
\end{array}\right]+v\left[\begin{array}{c}
1 \\
-6 \\
7
\end{array}\right]+w\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right]=\left[\begin{array}{c}
5 \\
-2 \\
9
\end{array}\right]=b
$$

What about column representation
Then, we have

$$
u\left[\begin{array}{c}
2 \\
4 \\
-2
\end{array}\right]+v\left[\begin{array}{c}
1 \\
-6 \\
7
\end{array}\right]+w\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right]=\left[\begin{array}{c}
5 \\
-2 \\
9
\end{array}\right]=b
$$

Something Notable

- Those are three-dimensional column vectors.

What about column representation

Then, we have

$$
u\left[\begin{array}{c}
2 \\
4 \\
-2
\end{array}\right]+v\left[\begin{array}{c}
1 \\
-6 \\
7
\end{array}\right]+w\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right]=\left[\begin{array}{c}
5 \\
-2 \\
9
\end{array}\right]=b
$$

Something Notable

- Those are three-dimensional column vectors.
- The vector b is identified with the point whose coordinates are $5,-2$, 9.

What about column representation

Then, we have

$$
u\left[\begin{array}{c}
2 \\
4 \\
-2
\end{array}\right]+v\left[\begin{array}{c}
1 \\
-6 \\
7
\end{array}\right]+w\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right]=\left[\begin{array}{c}
5 \\
-2 \\
9
\end{array}\right]=b
$$

Something Notable

- Those are three-dimensional column vectors.
- The vector b is identified with the point whose coordinates are $5,-2$, 9.

That was the idea of Descartes

- Descartes added the concept of a coordinate system to move the Greek Classic Geometry

What about column representation

Then, we have

$$
u\left[\begin{array}{c}
2 \\
4 \\
-2
\end{array}\right]+v\left[\begin{array}{c}
1 \\
-6 \\
7
\end{array}\right]+w\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right]=\left[\begin{array}{c}
5 \\
-2 \\
9
\end{array}\right]=b
$$

Something Notable

- Those are three-dimensional column vectors.
- The vector b is identified with the point whose coordinates are $5,-2$, 9.

That was the idea of Descartes

- Descartes added the concept of a coordinate system to move the Greek Classic Geometry
- Into an Algebra of Vectors

This allows to define

Vector addition

$$
\left[\begin{array}{l}
a_{11} \\
a_{21} \\
a_{31}
\end{array}\right]+\left[\begin{array}{l}
a_{12} \\
a_{22} \\
a_{31}
\end{array}\right]+\left[\begin{array}{l}
a_{13} \\
a_{23} \\
a_{33}
\end{array}\right]=\left[\begin{array}{l}
a_{11}+a_{12}+a_{13} \\
a_{21}+a_{22}+a_{23} \\
a_{31}+a_{32}+a_{33}
\end{array}\right]
$$

Further

Multiplication by scalars

$$
x\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]=\left[\begin{array}{l}
x \cdot a_{1} \\
x \cdot a_{2} \\
x \cdot a_{3}
\end{array}\right]
$$

Finally

Linear combination - combine the previous concepts

$$
x_{1}\left[\begin{array}{l}
a_{11} \\
a_{21} \\
a_{31}
\end{array}\right]+x_{2}\left[\begin{array}{l}
a_{12} \\
a_{22} \\
a_{31}
\end{array}\right]+x_{3}\left[\begin{array}{l}
a_{13} \\
a_{23} \\
a_{33}
\end{array}\right]=\left[\begin{array}{l}
x_{1} a_{11}+x_{2} a_{12}+x_{3} a_{13} \\
x_{1} a_{21}+x_{2} a_{22}+x_{3} a_{23} \\
x_{1} a_{31}+x_{2} a_{32}+x_{3} a_{33}
\end{array}\right]
$$

Our Goal, Beyond Two or Three Dimensions

We have

- With n equations in n unknowns, there are n planes in the row picture.

Our Goal, Beyond Two or Three Dimensions

We have

- With n equations in n unknowns, there are n planes in the row picture.
- There are n vectors in the column picture, plus a vector b on the right side.

Our Goal, Beyond Two or Three Dimensions

We have

- With n equations in n unknowns, there are n planes in the row picture.
- There are n vectors in the column picture, plus a vector b on the right side.
- The equations ask for a linear combination of the n columns that equals b.

Our Goal, Beyond Two or Three Dimensions

We have

- With n equations in n unknowns, there are n planes in the row picture.
- There are n vectors in the column picture, plus a vector b on the right side.
- The equations ask for a linear combination of the n columns that equals b.

Something Notable

- For certain equations that will be impossible.

Our Goal, Beyond Two or Three Dimensions

We have

- With n equations in n unknowns, there are n planes in the row picture.
- There are n vectors in the column picture, plus a vector b on the right side.
- The equations ask for a linear combination of the n columns that equals b.

Something Notable

- For certain equations that will be impossible.

Here

- Row picture: Intersection of planes

Our Goal, Beyond Two or Three Dimensions

We have

- With n equations in n unknowns, there are n planes in the row picture.
- There are n vectors in the column picture, plus a vector b on the right side.
- The equations ask for a linear combination of the n columns that equals b.

Something Notable

- For certain equations that will be impossible.

Here

- Row picture: Intersection of planes
- Column picture: Combination of columns

Outline

－Why and What？
－A Little Bit of History
（2）Matrices and Gaussian Elimination
－Introduction
－The Geometry of Linear Equations
－Example
－Column Vectors and Linear Combinations
－The Singular Case
－An Example of Gaussian Elimination
－Fixing some problems of Singularity
－The Cost Of Elimination
－Convert Everything into Matrix Multiplications
－Example of Using Elementary Matrices
（3）Vector Space
－Introduction
－Classic Example，The Matrix Space $\mathbb{R}^{n \times m}$
－Some Notes in Notation
－Sub－spaces and Linear Combinations
－Recognizing Sub－spaces
－Linear CombinationsSpanned Space
（4）Basis and Dimensions
－Basis
－Coordinates
－Basis and Dimensions
（5）Fundamental Spaces
－Introduction
－Examples Using a Specific Matrix
－Fundamental Theorem of Linear Algebra
－Existence of Inverses

Now, Imagine the following

What Happens with Three Planes in \mathbb{R}^{3}

- And they do not intersect

Now, Imagine the following

What Happens with Three Planes in \mathbb{R}^{3}

- And they do not intersect

For example

- $2 u+v+w=5$
- $4 u+2 v+2 w=13$

Now, Imagine the following

What Happens with Three Planes in \mathbb{R}^{3}

- And they do not intersect

For example

- $2 u+v+w=5$
- $4 u+2 v+2 w=13$

Trying to do Gaussian Elimination

- It not allows to find a solution!!!

Basically, we can go worse with three planes

We could have have two parallel planes

Basically, we can go worse with three planes

We could have have two parallel planes

Furthermore

(1) No intersection
(2) All Parallel Planes

For Example, No intersection

This corresponds to a singular system

$$
\begin{aligned}
u+v+w & =2 \\
2 u+3 w & =5 \\
3 u+v+4 w & =6
\end{aligned}
$$

For Example, No intersection

This corresponds to a singular system

$$
\begin{aligned}
u+v+w & =2 \\
2 u+3 w & =5 \\
3 u+v+4 w & =6
\end{aligned}
$$

Here

- The first two left sides add up to the third.

For Example, No intersection

This corresponds to a singular system

$$
\begin{aligned}
u+v+w & =2 \\
2 u+3 w & =5 \\
3 u+v+4 w & =6
\end{aligned}
$$

Here

- The first two left sides add up to the third.
- On the right side that fails: $2+5 \neq 6$.

For Example, No intersection

This corresponds to a singular system

$$
\begin{aligned}
u+v+w & =2 \\
2 u+3 w & =5 \\
3 u+v+4 w & =6
\end{aligned}
$$

Here

- The first two left sides add up to the third.
- On the right side that fails: $2+5 \neq 6$.
- Additionally 1 plus equation 2 minus equation 3 is the impossible statement $0=1$.

For Example, No intersection

This corresponds to a singular system

$$
\begin{aligned}
u+v+w & =2 \\
2 u+3 w & =5 \\
3 u+v+4 w & =6
\end{aligned}
$$

Here

- The first two left sides add up to the third.
- On the right side that fails: $2+5 \neq 6$.
- Additionally 1 plus equation 2 minus equation 3 is the impossible statement $0=1$.

Thus

- The equation are inconsistent

Further

What about an infinity set of solutions

$$
\begin{aligned}
u+v+w & =2 \\
2 u+3 w & =5 \\
3 u+v+4 w & =7
\end{aligned}
$$

Further

What about an infinity set of solutions

$$
\begin{aligned}
u+v+w & =2 \\
2 u+3 w & =5 \\
3 u+v+4 w & =7
\end{aligned}
$$

In such case

- The three planes have a whole line in common.

Further

What about an infinity set of solutions

$$
\begin{array}{r}
u+v+w=2 \\
2 u+3 w=5 \\
3 u+v+4 w=7
\end{array}
$$

In such case

- The three planes have a whole line in common.

Thus

- You have many solution not a zeroth of solution.

Finally

The extreme case is three parallel planes

However

For special right sides, for example $b=(0,0,0)^{T}$

- The three parallel planes move over to become the same.
- There is a whole plane of solutions.

However

For special right sides, for example $b=(0,0,0)^{T}$

- The three parallel planes move over to become the same.
- There is a whole plane of solutions.

Question

- What happens to the column picture when the system is singular?

Outline

－Why and What？
－A Little Bit of History
（2）Matrices and Gaussian Elimination
－Introduction
－The Geometry of Linear Equations
－Example
－Column Vectors and Linear Combinations
－The Singular Case
－An Example of Gaussian Elimination
－Fixing some problems of Singularity
－The Cost Of Elimination
－Convert Everything into Matrix Multiplications
－Example of Using Elementary Matrices
（3）Vector Space
－Introduction
－Classic Example．The Matrix Space $\mathbb{R}^{n \times m}$
－Some Notes in Notation
－Sub－spaces and Linear Combinations
－Recognizing Sub－spaces
－Linear CombinationsSpanned Space
（4）Basis and Dimensions
－
Basis
－Coordinates
－Basis and Dimensions
（5）Fundamental Spaces
－Introduction
－Examples Using a Specific Matrix
－Fundamental Theorem of Linear Algebra
－Existence of Inverses

We have an example

The System

$$
\begin{aligned}
2 u+v+w & =5 \\
4 u-6 v & =-2 \\
-2 u+7 v+2 w & =9
\end{aligned}
$$

We have an example

The System

$$
\begin{aligned}
2 u+v+w & =5 \\
4 u-6 v & =-2 \\
-2 u+7 v+2 w & =9
\end{aligned}
$$

As Always, we want to find

- u, v, w

Applying Gaussian Elimination

First Step

- Subtracting multiples of the first equation from the other equations

Applying Gaussian Elimination

First Step

- Subtracting multiples of the first equation from the other equations

For Example

- Subtract 2 times the first equation from the second.
- Subtract -1 times the first equation from the third.

Applying Gaussian Elimination

First Step

- Subtracting multiples of the first equation from the other equations

For Example

- Subtract 2 times the first equation from the second.
- Subtract -1 times the first equation from the third.

Therefore

$$
\begin{aligned}
\mathbf{2} u+v+w & =5 \\
-\mathbf{8 v}-2 w & =-12 \\
8 v+3 w & =14
\end{aligned}
$$

Pivot

We have that

- The coefficient 2 is the first pivot.

Pivot

We have that

- The coefficient 2 is the first pivot.

Something Notable

- Elimination is constantly dividing the pivot into the numbers underneath it.

Pivot

We have that

- The coefficient 2 is the first pivot.

Something Notable

- Elimination is constantly dividing the pivot into the numbers underneath it.

Basically, if we put everything in terms of matrices

$$
\left[\begin{array}{ccc}
2 & 1 & 1 \\
0 & -8 & -2 \\
0 & 8 & 3
\end{array}\right]\left(\begin{array}{l}
u \\
v \\
w
\end{array}\right)=\left(\begin{array}{c}
5 \\
-12 \\
14
\end{array}\right)
$$

Completing the process

Subtract 1 times the second equation from the third

$$
\begin{aligned}
\mathbf{2} u+v+w & =5 \\
-\mathbf{8} v-2 w & =-12 \\
\mathbf{1} w & =2
\end{aligned}
$$

Completing the process

Subtract 1 times the second equation from the third

$$
\begin{aligned}
2 u+v+w & =5 \\
-8 v-2 w & =-12 \\
\mathbf{1} w & =2
\end{aligned}
$$

Know as a Triangular System

- Now substituting backwards, we can obtain our solutions:
- This process is called back-substitution.

Completing the process

Subtract 1 times the second equation from the third

$$
\begin{aligned}
\mathbf{2} u+v+w & =5 \\
-\mathbf{8} v-2 w & =-12 \\
\mathbf{1} w & =2
\end{aligned}
$$

Know as a Triangular System

- Now substituting backwards, we can obtain our solutions:
- This process is called back-substitution.

For example

- At the Board...

A nice way to look at this substitution

We get our system to the bare minimum

$$
\left[\begin{array}{cccc}
2 & 1 & 1 & 5 \\
4 & -6 & 0 & -2 \\
-2 & 7 & 2 & 9
\end{array}\right] \mapsto\left[\begin{array}{cccc}
2 & 1 & 1 & 5 \\
0 & -8 & -2 & -12 \\
0 & 8 & 3 & 14
\end{array}\right]
$$

A nice way to look at this substitution

We get our system to the bare minimum

$$
\left[\begin{array}{cccc}
2 & 1 & 1 & 5 \\
4 & -6 & 0 & -2 \\
-2 & 7 & 2 & 9
\end{array}\right] \mapsto\left[\begin{array}{cccc}
2 & 1 & 1 & 5 \\
0 & -8 & -2 & -12 \\
0 & 8 & 3 & 14
\end{array}\right]
$$

Further

$$
\left[\begin{array}{cccc}
2 & 1 & 1 & 5 \\
0 & -8 & -2 & -12 \\
0 & 8 & 3 & 14
\end{array}\right] \mapsto\left[\begin{array}{cccc}
2 & 1 & 1 & 5 \\
0 & -8 & -2 & -12 \\
0 & 0 & 1 & 2
\end{array}\right]
$$

Outline

- Why and What?
- A Little Bit of History
(2) Matrices and Gaussian Elimination
- Introduction
- The Geometry of Linear Equations
- Example
- Column Vectors and Linear Combinations
- The Singular Case
- An Example of Gaussian Elimination
- Fixing some problems of Singularity
- The Cost Of Elimination
- Convert Everything into Matrix Multiplications
- Example of Using Elementary Matrices
(3) Vector Space
- Introduction
- Classic Example, The Matrix Space $\mathbb{R}^{n \times m}$
- Some Notes in Notation
- Sub-spaces and Linear Combinations
- Recognizing Sub-spaces
- Linear CombinationsSpanned Space
(4) Basis and Dimensions
- Basis
- Coordinates
- Basis and Dimensions
(5) Fundamental Spaces
- Introduction
- Examples Using a Specific Matrix
- Fundamental Theorem of Linear Algebra
- Existence of Inverses

Question

Important

- Under what circumstances could the process break down?

Question

Important

- Under what circumstances could the process break down?

Very Simple

- If a zero appears in a pivot position.

Question

Important

- Under what circumstances could the process break down?

Very Simple

- If a zero appears in a pivot position.

The main problem

- We do not know whether a zero will appear until we try.

We can try to cure this by exchanging rows!!!

Nonsingular - exchanging equations 2 and 3

$$
\left[\begin{array}{cccc}
1 & 1 & 1 & - \\
2 & 2 & 5 & - \\
4 & 6 & 8 & -
\end{array}\right] \mapsto\left[\begin{array}{llll}
1 & 1 & 1 & - \\
0 & 0 & 3 & - \\
0 & 2 & 4 & -
\end{array}\right] \mapsto\left[\begin{array}{llll}
1 & 1 & 1 & - \\
0 & 2 & 4 & - \\
0 & 0 & 3 & -
\end{array}\right]
$$

We can try to cure this by exchanging rows!!!

Nonsingular - exchanging equations 2 and 3

$$
\left[\begin{array}{cccc}
1 & 1 & 1 & - \\
2 & 2 & 5 & - \\
4 & 6 & 8 & -
\end{array}\right] \mapsto\left[\begin{array}{cccc}
1 & 1 & 1 & - \\
0 & 0 & 3 & - \\
0 & 2 & 4 & -
\end{array}\right] \mapsto\left[\begin{array}{cccc}
1 & 1 & 1 & - \\
0 & 2 & 4 & - \\
0 & 0 & 3 & -
\end{array}\right]
$$

Singular (incurable)

$$
\left[\begin{array}{llll}
1 & 1 & 1 & - \\
2 & 2 & 5 & - \\
4 & 4 & 8 & -
\end{array}\right] \mapsto\left[\begin{array}{llll}
1 & 1 & 1 & - \\
0 & 0 & 3 & - \\
0 & 0 & 4 & -
\end{array}\right]
$$

Outline

－Why and What？
－A Little Bit of History
（2）Matrices and Gaussian Elimination
－Introduction
－The Geometry of Linear Equations
－Example
－Column Vectors and Linear Combinations
－The Singular Case
－An Example of Gaussian Elimination
－Fixing some problems of Singularity
－The Cost Of Elimination
－Convert Everything into Matrix Multiplications
－Example of Using Elementary Matrices
（3）Vector Space
－Introduction
－Classic Example，The Matrix Space $\mathbb{R}^{n \times m}$
－Some Notes in Notation
－Sub－spaces and Linear Combinations
－Recognizing Sub－spaces
－Linear CombinationsSpanned Space
（4）Basis and Dimensions
－
Basis
－Coordinates
－Basis and Dimensions
（5）Fundamental Spaces
－Introduction
－Examples Using a Specific Matrix
－Fundamental Theorem of Linear Algebra
－Existence of Inverses

How many separate arithmetical operations do we need?

Look at the Left Side of the Equations

- We have two types:
- We divide by the pivot to know what multiple of the pivot equation is to be subtracted.

How many separate arithmetical operations do we need?

Look at the Left Side of the Equations

- We have two types:
- We divide by the pivot to know what multiple of the pivot equation is to be subtracted.

Therefore, we have a multiple l

- The terms in the pivot equation are multiplied by l,
- Then subtracted from another equation.

How many separate arithmetical operations do we need?

Look at the Left Side of the Equations

- We have two types:
- We divide by the pivot to know what multiple of the pivot equation is to be subtracted.

Therefore, we have a multiple l

- The terms in the pivot equation are multiplied by l,
- Then subtracted from another equation.

If we have n operations to obtain the desired zeros of the other columns

- One to find l and the other to create the new entries.

Therefore

We have $n-1$ rows

- We need $n(n-1)=n^{2}-n$ operations

Therefore

We have $n-1$ rows

- We need $n(n-1)=n^{2}-n$ operations

This can be generalized

$$
k \longmapsto k^{2}-k
$$

Therefore

We have $n-1$ rows

- We need $n(n-1)=n^{2}-n$ operations

This can be generalized

$$
k \longmapsto k^{2}-k
$$

Then, we have for the Forward Elimination

$$
\left(1^{2}+2^{2}+\ldots+n^{2}\right)-(1+2+\ldots+n)=\frac{n(n+1)(2 n+1)}{6}-\frac{n(n+1)}{2}=\frac{n^{3}-n}{3}
$$

Therefore

If n is large

- The Left Side have a the following number of operations as $\frac{1}{3} n^{3}$.

Therefore

If n is large

- The Left Side have a the following number of operations as $\frac{1}{3} n^{3}$.

Now for back substitution

- $1+2+\ldots+n=\frac{n(n+1)}{2}$

Therefore

If n is large

- The Left Side have a the following number of operations as $\frac{1}{3} n^{3}$.

Now for back substitution

- $1+2+\ldots+n=\frac{n(n+1)}{2}$

Total Number of Operations for the Back and Forward Steps

$$
\frac{n^{3}-n}{3}+\frac{n(n+1)}{2}
$$

Forward elimination also acts on the right-hand side

The Total Forward and Backward is responsible on the Right Side of

$$
\text { - }[(n-1)+(n-2)+\ldots+1]+[1+2+\ldots+n]=n^{2}
$$

Outline

- Why and What?
- A Little Bit of History
(2) Matrices and Gaussian Elimination
- Introduction
- The Geometry of Linear Equations
- Example
- Column Vectors and Linear Combinations
- The Singular Case
- An Example of Gaussian Elimination
- Fixing some problems of Singularity
- The Cost Of Elimination
- Convert Everything into Matrix Multiplications
- Example of Using Elementary Matrices
(3) Vector Space
- Introduction
- Classic Example, The Matrix Space $\mathbb{R}^{n \times m}$
- Some Notes in Notation
- Sub-spaces and Linear Combinations
- Recognizing Sub-spaces
- Linear CombinationsSpanned Space
(4) Basis and DimensionsBasis
-

Coordinates

- Basis and Dimensions
(5) Fundamental Spaces
- Introduction
- Examples Using a Specific Matrix
- Fundamental Theorem of Linear Algebra
- Existence of Inverses

Thus

We start converting everything into a series of matrix multiplications

$$
\begin{aligned}
\mathbf{2} u+v+w & =5 \\
-\mathbf{8} v-2 w & =-12 \\
\mathbf{1} w & =2
\end{aligned}
$$

Thus

We start converting everything into a series of matrix multiplications

$$
\begin{aligned}
\mathbf{2} u+v+w & =5 \\
-\mathbf{8} v-2 w & =-12 \\
\mathbf{1} w & =2
\end{aligned}
$$

Then, we have a matrix representation!!!
$\left[\begin{array}{cccc}1 & 1 & 1 & 5 \\ 2 & 2 & 5 & -12 \\ 4 & 6 & 8 & 2\end{array}\right]$

For This, we introduce the concept of Elementary Matrices

Definition

- In mathematics, an elementary matrix is a matrix which differs from the identity matrix by one single elementary row operation.

Row switching

A row within the matrix can be switched with another row

$$
R_{i} \longleftrightarrow R_{j}
$$

Row switching

A row within the matrix can be switched with another row

$$
R_{i} \longleftrightarrow R_{j}
$$

Example

$$
\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Row multiplication

Each element in a row can be multiplied by a non-zero constant

$$
k R_{i} \longrightarrow R_{i} \text { where } k \neq 0
$$

Row multiplication

Each element in a row can be multiplied by a non-zero constant

$$
k R_{i} \longrightarrow R_{i} \text { where } k \neq 0
$$

Example

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 10 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Row addition

A row can be replaced by the sum of that row and a multiple of another row

$$
R_{i}+k R_{j} \longrightarrow R_{i} \text { where } i \neq j
$$

Row addition

A row can be replaced by the sum of that row and a multiple of another row

$$
R_{i}+k R_{j} \longrightarrow R_{i} \text { where } i \neq j
$$

Example

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 5 \\
0 & 0 & 1
\end{array}\right)
$$

Outline

- Why and What?
- A Little Bit of History
(2) Matrices and Gaussian Elimination
- Introduction
- The Geometry of Linear Equations
- Example
- Column Vectors and Linear Combinations
- The Singular Case
- An Example of Gaussian Elimination
- Fixing some problems of Singularity
- The Cost Of Elimination
- Convert Everything into Matrix Multiplications
- Example of Using Elementary Matrices
(3) Vector Space
- Introduction
- Classic Example, The Matrix Space $\mathbb{R}^{n \times m}$
- Some Notes in Notation
- Sub-spaces and Linear Combinations
- Recognizing Sub-spaces
- Linear CombinationsSpanned Space
4 Basis and DimensionsBasis
- Coordinates
- Basis and Dimensions
(5) Fundamental Spaces
- Introduction
- Examples Using a Specific Matrix
- Fundamental Theorem of Linear Algebra
- Existence of Inverses

We have then

Example

$$
\left[\begin{array}{cccc}
2 & 1 & 1 & 5 \\
4 & -6 & 0 & -2 \\
-2 & 7 & 2 & 9
\end{array}\right]
$$

We have then

Example

$$
\left[\begin{array}{cccc}
2 & 1 & 1 & 5 \\
4 & -6 & 0 & -2 \\
-2 & 7 & 2 & 9
\end{array}\right]
$$

Then, we have

$$
\left(\begin{array}{lll}
\frac{1}{2} & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left[\begin{array}{cccc}
2 & 1 & 1 & 5 \\
4 & -6 & 0 & -2 \\
-2 & 7 & 2 & 9
\end{array}\right]=\left[\begin{array}{cccc}
1 & \frac{1}{2} & \frac{1}{2} & \frac{5}{2} \\
4 & -6 & 0 & -2 \\
-2 & 7 & 2 & 9
\end{array}\right]
$$

Next

Second Row minus -4 first row

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \\
-4 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left[\begin{array}{cccc}
1 & \frac{1}{2} & \frac{1}{2} & \frac{5}{2} \\
4 & -6 & 0 & -2 \\
-2 & 7 & 2 & 9
\end{array}\right]=\left[\begin{array}{cccc}
1 & \frac{1}{2} & \frac{1}{2} & \frac{5}{2} \\
0 & -8 & -2 & -12 \\
-2 & 7 & 2 & 9
\end{array}\right]
$$

Next

Second Row minus -4 first row

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \\
-4 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left[\begin{array}{cccc}
1 & \frac{1}{2} & \frac{1}{2} & \frac{5}{2} \\
4 & -6 & 0 & -2 \\
-2 & 7 & 2 & 9
\end{array}\right]=\left[\begin{array}{cccc}
1 & \frac{1}{2} & \frac{1}{2} & \frac{5}{2} \\
0 & -8 & -2 & -12 \\
-2 & 7 & 2 & 9
\end{array}\right]
$$

Then

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
2 & 0 & 1
\end{array}\right)\left[\begin{array}{cccc}
1 & \frac{1}{2} & \frac{1}{2} & \frac{5}{2} \\
0 & -8 & -2 & -12 \\
-2 & 7 & 2 & 9
\end{array}\right]=\left[\begin{array}{cccc}
1 & \frac{1}{2} & \frac{1}{2} & \frac{5}{2} \\
0 & -8 & -2 & -12 \\
0 & 8 & 3 & 14
\end{array}\right]
$$

Therefore, we have

Now

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -\frac{1}{8} & 0 \\
0 & 0 & 1
\end{array}\right)\left[\begin{array}{cccc}
1 & \frac{1}{2} & \frac{1}{2} & \frac{5}{2} \\
0 & -8 & -2 & -12 \\
0 & 8 & 3 & 14
\end{array}\right]=\left[\begin{array}{cccc}
1 & \frac{1}{2} & \frac{1}{2} & \frac{5}{2} \\
0 & 1 & \frac{1}{4} & \frac{3}{2} \\
0 & 8 & 3 & 14
\end{array}\right]
$$

Therefore, we have

Now

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -\frac{1}{8} & 0 \\
0 & 0 & 1
\end{array}\right)\left[\begin{array}{cccc}
1 & \frac{1}{2} & \frac{1}{2} & \frac{5}{2} \\
0 & -8 & -2 & -12 \\
0 & 8 & 3 & 14
\end{array}\right]=\left[\begin{array}{cccc}
1 & \frac{1}{2} & \frac{1}{2} & \frac{5}{2} \\
0 & 1 & \frac{1}{4} & \frac{3}{2} \\
0 & 8 & 3 & 14
\end{array}\right]
$$

Thus

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -8 & 1
\end{array}\right)\left[\begin{array}{cccc}
1 & \frac{1}{2} & \frac{1}{2} & \frac{5}{2} \\
0 & 1 & \frac{1}{4} & \frac{3}{2} \\
0 & 8 & 3 & 14
\end{array}\right]=\left[\begin{array}{cccc}
1 & \frac{1}{2} & \frac{1}{2} & \frac{5}{2} \\
0 & 1 & \frac{1}{4} & \frac{3}{2} \\
0 & 0 & 1 & 2
\end{array}\right]
$$

Outline

－Why and What？
－A Little Bit of History
（2）Matrices and Gaussian Elimination
－Introduction
－The Geometry of Linear Equations
－Example
－Column Vectors and Linear Combinations
－The Singular Case
－An Example of Gaussian Elimination
－Fixing some problems of Singularity
－The Cost Of Elimination
－Convert Everything into Matrix Multiplications
－Example of Using Elementary Matrices
（3）Vector Space

－Introduction

－Classic Example，The Matrix Space $\mathbb{R}^{n \times m}$
－Some Notes in Notation
－Sub－spaces and Linear Combinations
－Recognizing Sub－spaces
－Linear CombinationsSpanned Space
（4）Basis and Dimensions
－
Basis
－
Coordinates
－Basis and Dimensions
（5）Fundamental Spaces
－Introduction
－Examples Using a Specific Matrix
－Fundamental Theorem of Linear Algebra
－Existence of Inverses

Vector Space V

Definition

A vector space V over the field K is a set of objects which can be added and multiplied by elements of K.

Vector Space V

Definition

A vector space V over the field K is a set of objects which can be added and multiplied by elements of K.

Where

- The sum of two elements of V is again an element of V.

Vector Space V

Definition

A vector space V over the field K is a set of objects which can be added and multiplied by elements of K.

Where

- The sum of two elements of V is again an element of V.
- The product of an element of V by an element of K is an element of V.

Vector Space V

Definition

A vector space V over the field K is a set of objects which can be added and multiplied by elements of K.

Where

- The sum of two elements of V is again an element of V.
- The product of an element of V by an element of K is an element of V.

Properties

We have then

(1) Given elements $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}$ of V, we have $(\boldsymbol{u}+\boldsymbol{v})+\boldsymbol{w}=\boldsymbol{u}+(\boldsymbol{v}+\boldsymbol{w})$.

Properties

We have then

(1) Given elements $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}$ of V, we have $(\boldsymbol{u}+\boldsymbol{v})+\boldsymbol{w}=\boldsymbol{u}+(\boldsymbol{v}+\boldsymbol{w})$.
(2) There is an element of V, denoted by O, such that $O+\boldsymbol{u}=\boldsymbol{u}+O=\boldsymbol{u}$ for all elements \boldsymbol{u} of V.

Properties

We have then

(1) Given elements $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}$ of V, we have $(\boldsymbol{u}+\boldsymbol{v})+\boldsymbol{w}=\boldsymbol{u}+(\boldsymbol{v}+\boldsymbol{w})$.
(2) There is an element of V, denoted by O, such that $O+\boldsymbol{u}=\boldsymbol{u}+O=\boldsymbol{u}$ for all elements \boldsymbol{u} of V.
(3) Given an element \boldsymbol{u} of V, there exists an element $-\boldsymbol{u}$ in V such that $\boldsymbol{u}+(-\boldsymbol{u})=O$.

Properties

We have then

(1) Given elements $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}$ of V, we have $(\boldsymbol{u}+\boldsymbol{v})+\boldsymbol{w}=\boldsymbol{u}+(\boldsymbol{v}+\boldsymbol{w})$.
(2) There is an element of V, denoted by O, such that $O+\boldsymbol{u}=\boldsymbol{u}+O=\boldsymbol{u}$ for all elements \boldsymbol{u} of V.
(3) Given an element \boldsymbol{u} of V, there exists an element $-\boldsymbol{u}$ in V such that $\boldsymbol{u}+(-\boldsymbol{u})=O$.
(c) For all elements $\boldsymbol{u}, \boldsymbol{v}$ of V, we have $\boldsymbol{u}+\boldsymbol{v}=\boldsymbol{v}+\boldsymbol{u}$.

Properties

We have then

(1) Given elements $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}$ of V, we have $(\boldsymbol{u}+\boldsymbol{v})+\boldsymbol{w}=\boldsymbol{u}+(\boldsymbol{v}+\boldsymbol{w})$.
(2) There is an element of V, denoted by O, such that $O+\boldsymbol{u}=\boldsymbol{u}+O=\boldsymbol{u}$ for all elements \boldsymbol{u} of V.
(3) Given an element \boldsymbol{u} of V, there exists an element $-\boldsymbol{u}$ in V such that $\boldsymbol{u}+(-\boldsymbol{u})=O$.
(c) For all elements $\boldsymbol{u}, \boldsymbol{v}$ of V, we have $\boldsymbol{u}+\boldsymbol{v}=\boldsymbol{v}+\boldsymbol{u}$.
(c) For all elements \boldsymbol{u} of V, we have $1 \cdot \boldsymbol{u}=\boldsymbol{u}$.

Properties

We have then

(1) Given elements $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}$ of V, we have $(\boldsymbol{u}+\boldsymbol{v})+\boldsymbol{w}=\boldsymbol{u}+(\boldsymbol{v}+\boldsymbol{w})$.
(2) There is an element of V, denoted by O, such that $O+\boldsymbol{u}=\boldsymbol{u}+O=\boldsymbol{u}$ for all elements \boldsymbol{u} of V.
(3) Given an element \boldsymbol{u} of V, there exists an element $-\boldsymbol{u}$ in V such that $\boldsymbol{u}+(-\boldsymbol{u})=O$.
(c) For all elements $\boldsymbol{u}, \boldsymbol{v}$ of V, we have $\boldsymbol{u}+\boldsymbol{v}=\boldsymbol{v}+\boldsymbol{u}$.
(9) For all elements \boldsymbol{u} of V, we have $1 \cdot \boldsymbol{u}=\boldsymbol{u}$.
(6) If c is a number, then $c(\boldsymbol{u}+\boldsymbol{v})=c \boldsymbol{u}+c \boldsymbol{v}$.

Properties

We have then

(1) Given elements $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}$ of V, we have $(\boldsymbol{u}+\boldsymbol{v})+\boldsymbol{w}=\boldsymbol{u}+(\boldsymbol{v}+\boldsymbol{w})$.
(2) There is an element of V, denoted by O, such that $O+\boldsymbol{u}=\boldsymbol{u}+O=\boldsymbol{u}$ for all elements \boldsymbol{u} of V.
(3) Given an element \boldsymbol{u} of V, there exists an element $-\boldsymbol{u}$ in V such that $\boldsymbol{u}+(-\boldsymbol{u})=O$.
(c) For all elements $\boldsymbol{u}, \boldsymbol{v}$ of V, we have $\boldsymbol{u}+\boldsymbol{v}=\boldsymbol{v}+\boldsymbol{u}$.
(0) For all elements \boldsymbol{u} of V, we have $1 \cdot \boldsymbol{u}=\boldsymbol{u}$.
(6) If c is a number, then $c(\boldsymbol{u}+\boldsymbol{v})=c \boldsymbol{u}+c \boldsymbol{v}$.
(0) if a, b are two numbers, then $(a b) \boldsymbol{v}=a(b \boldsymbol{v})$.

Properties

We have then

（1）Given elements $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}$ of V ，we have $(\boldsymbol{u}+\boldsymbol{v})+\boldsymbol{w}=\boldsymbol{u}+(\boldsymbol{v}+\boldsymbol{w})$ ．
（2）There is an element of V ，denoted by O ，such that $O+\boldsymbol{u}=\boldsymbol{u}+O=\boldsymbol{u}$ for all elements \boldsymbol{u} of V ．
（3）Given an element \boldsymbol{u} of V ，there exists an element $-\boldsymbol{u}$ in V such that $\boldsymbol{u}+(-\boldsymbol{u})=O$ ．
（c）For all elements $\boldsymbol{u}, \boldsymbol{v}$ of V ，we have $\boldsymbol{u}+\boldsymbol{v}=\boldsymbol{v}+\boldsymbol{u}$ ．
（c）For all elements \boldsymbol{u} of V ，we have $1 \cdot \boldsymbol{u}=\boldsymbol{u}$ ．
（6）If c is a number，then $c(\boldsymbol{u}+\boldsymbol{v})=c \boldsymbol{u}+c \boldsymbol{v}$ ．
（3）if a, b are two numbers，then $(a b) \boldsymbol{v}=a(b \boldsymbol{v})$ ．
（8）If a, b are two numbers，then $(a+b) \boldsymbol{v}=a \boldsymbol{v}+b \boldsymbol{v}$ ．

Outline

－Why and What？
－A Little Bit of History
（2）Matrices and Gaussian Elimination
－Introduction
－The Geometry of Linear Equations
－Example
－Column Vectors and Linear Combinations
－The Singular Case
－An Example of Gaussian Elimination
－Fixing some problems of Singularity
－The Cost Of Elimination
－Convert Everything into Matrix Multiplications
－Example of Using Elementary Matrices
Vector Space
－Introduction
－Classic Example，The Matrix Space $\mathbb{R}^{n \times m}$
－Some Notes in Notation
－Sub－spaces and Linear Combinations
－Recognizing Sub－spaces
－Linear Combinations
－
Spanned Space
4 Basis and Dimensions
－
Basis
－Coordinates
－Basis and Dimensions
（5）Fundamental Spaces
－Introduction
－Examples Using a Specific Matrix
－Fundamental Theorem of Linear Algebra
－Existence of Inverses

Therefore, we have

We have the existence of a Zero Matrix

$$
\left[\begin{array}{ccc}
2 & 1 & 1 \\
4 & -6 & 0 \\
-2 & 7 & 2
\end{array}\right]+\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]=\left[\begin{array}{ccc}
2 & 1 & 1 \\
4 & -6 & 0 \\
-2 & 7 & 2
\end{array}\right]
$$

Therefore, we have

We have the existence of a Zero Matrix

$$
\left[\begin{array}{ccc}
2 & 1 & 1 \\
4 & -6 & 0 \\
-2 & 7 & 2
\end{array}\right]+\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]=\left[\begin{array}{ccc}
2 & 1 & 1 \\
4 & -6 & 0 \\
-2 & 7 & 2
\end{array}\right]
$$

The existence of $-\boldsymbol{A}$

$$
\left[\begin{array}{ccc}
2 & 1 & 1 \\
4 & -6 & 0 \\
-2 & 7 & 2
\end{array}\right]+\left[\begin{array}{ccc}
-2 & -1 & -1 \\
-4 & 6 & -0 \\
2 & -7 & -2
\end{array}\right]=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Commutativity in Addition

We have

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
4 & 1 & 0 \\
1 & 0 & 0
\end{array}\right]+\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 1 & 3 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 1 & 3 \\
0 & 0 & 1
\end{array}\right]+\left[\begin{array}{lll}
1 & 0 & 0 \\
4 & 1 & 0 \\
1 & 0 & 0
\end{array}\right]
$$

Commutativity in Addition

We have

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
4 & 1 & 0 \\
1 & 0 & 0
\end{array}\right]+\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 1 & 3 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 1 & 3 \\
0 & 0 & 1
\end{array}\right]+\left[\begin{array}{lll}
1 & 0 & 0 \\
4 & 1 & 0 \\
1 & 0 & 0
\end{array}\right]
$$

But not in the Product of Matrices in General

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
4 & 1 & 0 \\
1 & 0 & 0
\end{array}\right]+\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 1 & 3 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 1 & 3 \\
0 & 0 & 1
\end{array}\right]+\left[\begin{array}{lll}
1 & 0 & 0 \\
4 & 1 & 0 \\
1 & 0 & 0
\end{array}\right]
$$

Outline

Why and What？
－A Little Bit of History
（2）Matrices and Gaussian Elimination
－Introduction
－The Geometry of Linear Equations
－Example
－Column Vectors and Linear Combinations
－The Singular Case
－An Example of Gaussian Elimination
－Fixing some problems of Singularity
－The Cost Of Elimination
－Convert Everything into Matrix Multiplications
－Example of Using Elementary Matrices
Vector Space
－Introduction
Classic Example，The Matrix Space $\mathbb{R}^{n \times m}$
－Some Notes in Notation
－Sub－spaces and Linear Combinations
－Recognizing Sub－spaces
－Linear CombinationsSpanned Space
（4）Basis and Dimensions
－Basis
－Coordinates
－Basis and Dimensions
（5）Fundamental Spaces
－Introduction
－Examples Using a Specific Matrix
－Fundamental Theorem of Linear Algebra
－Existence of Inverses

Notation

First, $u+(-v)$
As $\boldsymbol{u}-\boldsymbol{v}$.

Notation

First， $\boldsymbol{u}+(-\boldsymbol{v})$
As $\boldsymbol{u}-\boldsymbol{v}$ ．

For O

We will write sometimes 0 ．

Notation

First, $u+(-v)$
As $\boldsymbol{u}-\boldsymbol{v}$.

For O

We will write sometimes 0 .
The elements in the field K
They can receive the name of number or scalar.

Outline

- Why and What?
- A Little Bit of History

2) Matrices and Gaussian Elimination

- Introduction
- The Geometry of Linear Equations
- Example
- Column Vectors and Linear Combinations
- The Singular Case
- An Example of Gaussian Elimination
- Fixing some problems of Singularity
- The Cost Of Elimination
- Convert Everything into Matrix Multiplications
- Example of Using Elementary Matrices
(3) Vector Space
- Introduction
- Classic Example, The Matrix Space $\mathbb{R}^{n \times m}$
- Some Notes in Notation
- Sub-spaces and Linear Combinations

Recognizing Sub-spaces

- Linear CombinationsSpanned Space
(4) Basis and Dimensions
- Basis
- Coordinates
- Basis and Dimensions
(5) Fundamental Spaces
- Introduction
- Examples Using a Specific Matrix
- Fundamental Theorem of Linear Algebra
- Existence of Inverses
$82 / 151$

Sub-spaces

Definition

Let V a vector space and $W \subseteq V$, thus W is a subspace if:

Sub-spaces

Definition

Let V a vector space and $W \subseteq V$, thus W is a subspace if:
(1) If $\boldsymbol{v}, \boldsymbol{w} \in W$, then $\boldsymbol{v}+\boldsymbol{w} \in W$.

Sub-spaces

Definition

Let V a vector space and $W \subseteq V$, thus W is a subspace if:
(1) If $\boldsymbol{v}, \boldsymbol{w} \in W$, then $\boldsymbol{v}+\boldsymbol{w} \in W$.
(2) If $\boldsymbol{v} \in W$ and $c \in K$, then $c \boldsymbol{v} \in W$.

Sub-spaces

Definition

Let V a vector space and $W \subseteq V$, thus W is a subspace if:
(1) If $\boldsymbol{v}, \boldsymbol{w} \in W$, then $\boldsymbol{v}+\boldsymbol{w} \in W$.
(2) If $\boldsymbol{v} \in W$ and $c \in K$, then $c \boldsymbol{v} \in W$.
(3) The element $0 \in V$ is also an element of W.

Example

Let $V \in \mathbb{R}^{d+1}$

W be the set of vectors in V whose last coordinate is equal to 0 .

Example

Let $V \in \mathbb{R}^{d+1}$

W be the set of vectors in V whose last coordinate is equal to 0 .

Do you remember?

- The augmented data Matrix X.

Outline

- Why and What?
- A Little Bit of History

2) Matrices and Gaussian Elimination

- Introduction
- The Geometry of Linear Equations
- Example
- Column Vectors and Linear Combinations
- The Singular Case
- An Example of Gaussian Elimination
- Fixing some problems of Singularity
- The Cost Of Elimination
- Convert Everything into Matrix Multiplications
- Example of Using Elementary Matrices
(3) Vector Space
- Introduction
- Classic Example, The Matrix Space $\mathbb{R}^{n \times m}$
- Some Notes in Notation
- Sub-spaces and Linear Combinations
- Recognizing Sub-spaces
- Linear CombinationsSpanned Space
4 Basis and Dimensions
- Basis
- Coordinates
- Basis and Dimensions
(5) Fundamental Spaces
- Introduction
- Examples Using a Specific Matrix
- Fundamental Theorem of Linear Algebra
- Existence of Inverses

Some ways of recognizing Sub-spaces

Theorem

A non-empty subset W of V is a subspace of V if and only if for each pair of vectors $\boldsymbol{v}, \boldsymbol{w} \in W$ and each scalar $c \in K$ the vector $c \boldsymbol{v}+\boldsymbol{w} \in W$.

Example

For \mathbb{R}^{2}

Outline

- Why and What?
- A Little Bit of History
(2) Matrices and Gaussian Elimination
- Introduction
- The Geometry of Linear Equations
- Example
- Column Vectors and Linear Combinations
- The Singular Case
- An Example of Gaussian Elimination
- Fixing some problems of Singularity
- The Cost Of Elimination
- Convert Everything into Matrix Multiplications
- Example of Using Elementary Matrices
(3) Vector Space
- Introduction
- Classic Example, The Matrix Space $\mathbb{R}^{n \times m}$
- Some Notes in Notation
- Sub-spaces and Linear Combinations
- Recognizing Sub-spaces
- Linear Combinations
-

Spanned Space
(4) Basis and Dimensions

- Basis
- Coordinates
- Basis and Dimensions
(5) Fundamental Spaces
- Introduction
- Examples Using a Specific Matrix
- Fundamental Theorem of Linear Algebra
- Existence of Inverses

Linear Combinations

Definition

Let V an arbitrary vector space, and let $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n} \in V$ and $x_{1}, x_{2}, \ldots, x_{n} \in K$. Then, an expression like

$$
\begin{equation*}
x_{1} \boldsymbol{v}_{1}+x_{2} \boldsymbol{v}_{2}+\ldots+x_{n} \boldsymbol{v}_{n} \tag{6}
\end{equation*}
$$

is called a linear combination of $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}$.

An Important Subspace

Something Notable

- Let W be the set of all linear combinations of subspace of $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}$. Then W is a subspace of V

An Important Subspace

Something Notable

- Let W be the set of all linear combinations of subspace of $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}$. Then W is a subspace of V

Proof

- Take a look at the white board...

Classic Examples

Endmember Representation in Hyperspectral Images

Look at the board

Classic Examples

Endmember Representation in Hyperspectral Images
Look at the board
Geometric Representation of addition of forces in Physics
Look at the board!!

An Interesting Example

Let $V=\mathbb{R}^{d}$

- Let \boldsymbol{x} and $\boldsymbol{y} \in V$ such that

$$
\boldsymbol{x}=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{d}
\end{array}\right) \text { and } \boldsymbol{y}=\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{d}
\end{array}\right)
$$

An Interesting Example

Let $V=\mathbb{R}^{d}$

- Let \boldsymbol{x} and $\boldsymbol{y} \in V$ such that

$$
\boldsymbol{x}=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{d}
\end{array}\right) \text { and } \boldsymbol{y}=\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{d}
\end{array}\right)
$$

We define the dot product or scalar product

$$
\boldsymbol{x} \cdot \boldsymbol{y}=\boldsymbol{x}^{T} \boldsymbol{y}=\left(\begin{array}{llll}
x_{1} & x_{2} & \cdots & x_{d}
\end{array}\right)\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{d}
\end{array}\right)=\sum_{i=1}^{d} x_{i} y_{i}
$$

Alternate Defintion

We can also define the dot product as

$$
\boldsymbol{x} \cdot \boldsymbol{y}=\sqrt{\sum_{i=1}^{d} x_{i}^{2}} \sqrt{\sum_{i=1}^{d} y_{i}^{2}} \cos \Theta
$$

We have the following properties for this dot product

SP 1

- We have $\boldsymbol{x} \cdot \boldsymbol{y}=\boldsymbol{y} \cdot \boldsymbol{x}$

We have the following properties for this dot product

SP 1

- We have $\boldsymbol{x} \cdot \boldsymbol{y}=\boldsymbol{y} \cdot \boldsymbol{x}$

SP 2

- If $\boldsymbol{x}, \boldsymbol{y}$ and $\boldsymbol{z} \in V$

$$
\boldsymbol{x} \cdot(\boldsymbol{y}+\boldsymbol{z})=\boldsymbol{x} \cdot \boldsymbol{y}+\boldsymbol{x} \cdot \boldsymbol{z}=(\boldsymbol{y}+\boldsymbol{z}) \cdot \boldsymbol{x}
$$

We have the following properties for this dot product

SP 1

- We have $\boldsymbol{x} \cdot \boldsymbol{y}=\boldsymbol{y} \cdot \boldsymbol{x}$

SP 2

- If $\boldsymbol{x}, \boldsymbol{y}$ and $\boldsymbol{z} \in V$

$$
\boldsymbol{x} \cdot(\boldsymbol{y}+\boldsymbol{z})=\boldsymbol{x} \cdot \boldsymbol{y}+\boldsymbol{x} \cdot \boldsymbol{z}=(\boldsymbol{y}+\boldsymbol{z}) \cdot \boldsymbol{x}
$$

SP 3

- if $k \in K$

$$
\begin{aligned}
& (k \boldsymbol{x}) \cdot \boldsymbol{y}=k(\boldsymbol{x} \cdot \boldsymbol{y}) \\
& \boldsymbol{x} \cdot(k \boldsymbol{y})=k(\boldsymbol{x} \cdot \boldsymbol{y})
\end{aligned}
$$

Outline

introduction

- Why and What?
- A Little Bit of History

2. Matrices and Gaussian Elimination

- Introduction
- The Geometry of Linear Equations
- Example
- Column Vectors and Linear Combinations
- The Singular Case
- An Example of Gaussian Elimination
- Fixing some problems of Singularity
- The Cost Of Elimination
- Convert Everything into Matrix Multiplications
- Example of Using Elementary Matrices
(3) Vector Space
- Introduction
- Classic Example, The Matrix Space $\mathbb{R}^{n \times m}$
- Some Notes in Notation
- Sub-spaces and Linear Combinations
- Recognizing Süb-spaces
- Linear Combinations
- Spanned Space

4 Basis and Dimensions

- Basis
- Coordinates
- Basis and Dimensions
(5) Fundamental Spaces
- Introduction
- Examples Using a Specific Matrix
- Fundamental Theorem of Linear Algebra
- Existence of Inverses

Properties and Definitions

Theorem

Let V be a vector space over the field K. The intersection of any collection of sub-spaces of V is a subspace of V.

Properties and Definitions

Theorem

Let V be a vector space over the field K. The intersection of any collection of sub-spaces of V is a subspace of V.

Definition

- Let S be a set of vectors in a vector space V.

Properties and Definitions

Theorem

Let V be a vector space over the field K. The intersection of any collection of sub-spaces of V is a subspace of V.

Definition

- Let S be a set of vectors in a vector space V.
- The sub-space spanned by S is defined as the intersection W of all sub-spaces of V which contains S.

Properties and Definitions

Theorem

Let V be a vector space over the field K. The intersection of any collection of sub-spaces of V is a subspace of V.

Definition

- Let S be a set of vectors in a vector space V.
- The sub-space spanned by S is defined as the intersection W of all sub-spaces of V which contains S.
- When S is a finite set of vectors, $S=\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right\}$, we shall simply call W the sub-space spanned by the vectors $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}$.

We get the following Theorem

Theorem

The subspace spanned by $S \neq \emptyset$ is the set of all linear combinations of vectors in S.

Outline

Introduction

- Why and What?
- A Little Bit of History
(2) Matrices and Gaussian Elimination
- Introduction
- The Geometry of Linear Equations
- Example
- Column Vectors and Linear Combinations
- The Singular Case
- An Example of Gaussian Elimination
- Fixing some problems of Singularity
- The Cost Of Elimination
- Convert Everything into Matrix Multiplications
- Example of Using Elementary Matrices
(3) Vector Space
- Introduction
- Classic Example, The Matrix Space $\mathbb{R}^{n \times m}$
- Some Notes in Notation
- Sub-spaces and Linear Combinations
- Recognizing Sub-spaces
- Linear Combinations
- Spanned Space
(4) Basis and Dimensions
- Basis
- Coordinates
- Basis and Dimensions
(5) Fundamental Spaces
- Introduction
- Examples Using a Specific Matrix
- Fundamental Theorem of Linear Algebra
- Existence of Inverses

Linear Independence

Definition

Let V be a vector space over a field K, and let $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n} \in V$. We have that $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}$ are linearly dependent over K if there are elements $a_{1}, a_{2}, \ldots, a_{n} \in K$ not all equal to 0 such that

$$
a_{1} \boldsymbol{v}_{1}+a_{2} \boldsymbol{v}_{2}+\ldots+a_{n} \boldsymbol{v}_{n}=O
$$

Linear Independence

Definition

Let V be a vector space over a field K, and let $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n} \in V$. We have that $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}$ are linearly dependent over K if there are elements $a_{1}, a_{2}, \ldots, a_{n} \in K$ not all equal to 0 such that

$$
a_{1} \boldsymbol{v}_{1}+a_{2} \boldsymbol{v}_{2}+\ldots+a_{n} \boldsymbol{v}_{n}=O
$$

Thus

Therefore, if there are not such numbers, then we say that $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}$ are linearly independent.

Linear Independence

Definition

Let V be a vector space over a field K, and let $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n} \in V$. We have that $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}$ are linearly dependent over K if there are elements $a_{1}, a_{2}, \ldots, a_{n} \in K$ not all equal to 0 such that

$$
a_{1} \boldsymbol{v}_{1}+a_{2} \boldsymbol{v}_{2}+\ldots+a_{n} \boldsymbol{v}_{n}=O
$$

Thus

Therefore, if there are not such numbers, then we say that $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}$ are linearly independent.

We have the following

Example!!!

Basis

Definition

If elements $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}$ generate V and in addition are linearly independent, then $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right\}$ is called a basis of V. In other words the elements $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}$ form a basis of V.

Basis

Definition

If elements $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}$ generate V and in addition are linearly independent, then $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right\}$ is called a basis of V. In other words the elements $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}$ form a basis of V.

Examples

The Classic Ones!!!

Outline

- Why and What?
- A Little Bit of History
(2) Matrices and Gaussian Elimination
- Introduction
- The Geometry of Linear Equations
- Example
- Column Vectors and Linear Combinations
- The Singular Case
- An Example of Gaussian Elimination
- Fixing some problems of Singularity
- The Cost Of Elimination
- Convert Everything into Matrix Multiplications
- Example of Using Elementary Matrices
(3) Vector Space
- Introduction
- Classic Example, The Matrix Space $\mathbb{R}^{n \times m}$
- Some Notes in Notation
- Sub-spaces and Linear Combinations
- Recognizing Sub-spaces
- Linear Combinations
-

Spanned Space
(4) Basis and Dimensions

Basis

- Coordinates
- Basis and Dimensions
(5) Fundamental Spaces
- Introduction
- Examples Using a Specific Matrix
- Fundamental Theorem of Linear Algebra
- Existence of Inverses

Coordinates

Theorem

Let V be a vector space. Let $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}$ be linearly independent elements of V . Let x_{1}, \ldots, x_{n} and y_{1}, \ldots, y_{n} be numbers. Suppose that we have

$$
\begin{equation*}
x_{1} \boldsymbol{v}_{1}+x_{2} \boldsymbol{v}_{2}+\cdots+x_{n} \boldsymbol{v}_{n}=y_{1} \boldsymbol{v}_{1}+y_{2} \boldsymbol{v}_{2}+\cdots+y_{n} \boldsymbol{v}_{n} \tag{7}
\end{equation*}
$$

Then, $x_{i}=y_{i}$ for all $i=1, \ldots, n$.

Coordinates

Theorem

Let V be a vector space. Let $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}$ be linearly independent elements of V . Let x_{1}, \ldots, x_{n} and y_{1}, \ldots, y_{n} be numbers. Suppose that we have

$$
\begin{equation*}
x_{1} \boldsymbol{v}_{1}+x_{2} \boldsymbol{v}_{2}+\cdots+x_{n} \boldsymbol{v}_{n}=y_{1} \boldsymbol{v}_{1}+y_{2} \boldsymbol{v}_{2}+\cdots+y_{n} \boldsymbol{v}_{n} \tag{7}
\end{equation*}
$$

Then, $x_{i}=y_{i}$ for all $i=1, \ldots, n$.

Proof

At the Board...

Coordinates

Let V be a vector space, and let $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right\}$ be a basis of V
For all $\boldsymbol{v} \in V, \boldsymbol{v}=x_{1} \boldsymbol{v}_{1}+x_{2} \boldsymbol{v}_{2}+\cdots+x_{n} \boldsymbol{v}_{n}$.

Coordinates

Let V be a vector space, and let $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right\}$ be a basis of V
For all $\boldsymbol{v} \in V, \boldsymbol{v}=x_{1} \boldsymbol{v}_{1}+x_{2} \boldsymbol{v}_{2}+\cdots+x_{n} \boldsymbol{v}_{n}$.
Thus, this n-tuple is uniquely determined by v
We will call $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ as the coordinates of \boldsymbol{v} with respect to the basis.

Coordinates

Let V be a vector space, and let $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right\}$ be a basis of V
For all $\boldsymbol{v} \in V, \boldsymbol{v}=x_{1} \boldsymbol{v}_{1}+x_{2} \boldsymbol{v}_{2}+\cdots+x_{n} \boldsymbol{v}_{n}$.
Thus, this n-tuple is uniquely determined by v
We will call $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ as the coordinates of \boldsymbol{v} with respect to the basis.

The n-tuple $X=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$
It is the coordinate vector of \boldsymbol{v} with respect to the basis $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right\}$.

Outline

- Why and What?
- A Little Bit of History
(2) Matrices and Gaussian Elimination
- Introduction
- The Geometry of Linear Equations
- Example
- Column Vectors and Linear Combinations
- The Singular Case
- An Example of Gaussian Elimination
- Fixing some problems of Singularity
- The Cost Of Elimination
- Convert Everything into Matrix Multiplications
- Example of Using Elementary Matrices
- Introduction
- Classic Example, The Matrix Space $\mathbb{R}^{n \times m}$
- Some Notes in Notation
- Sub-spaces and Linear Combinations
- Recognizing Sub-spaces
- Linear Combinations
-

Spanned Space
(4) Basis and Dimensions

- Basis
- Coordinates
- Basis and Dimensions
(5) Fundamental Spaces
- Introduction
- Examples Using a Specific Matrix
- Fundamental Theorem of Linear Algebra
- Existence of Inverses

Properties of a Basis

Theorem - (Limit in the size of the basis)
Let V be a vector space over a field K with a basis $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{m}\right\}$. Let $\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \ldots, \boldsymbol{w}_{n}$ be elements of V, and assume that $n>m$. Then $\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \ldots, \boldsymbol{w}_{n}$ are linearly dependent.

Properties of a Basis

Theorem - (Limit in the size of the basis)
Let V be a vector space over a field K with a basis $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{m}\right\}$. Let $\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \ldots, \boldsymbol{w}_{n}$ be elements of V, and assume that $n>m$. Then $\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \ldots, \boldsymbol{w}_{n}$ are linearly dependent.

Properties of a Basis

Theorem - (Limit in the size of the basis)
Let V be a vector space over a field K with a basis $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{m}\right\}$. Let $\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \ldots, \boldsymbol{w}_{n}$ be elements of V, and assume that $n>m$. Then $\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \ldots, \boldsymbol{w}_{n}$ are linearly dependent.

Examples

We have the following...

Some Basic Definitions

We will define the dimension of a vector space V over K
As the number of elements in the basis.

- Denoted by $\operatorname{dim}_{K} V$, or simply $\operatorname{dim} V$

Some Basic Definitions

We will define the dimension of a vector space V over K
As the number of elements in the basis.

- Denoted by $\operatorname{dim}_{K} V$, or simply $\operatorname{dim} V$

Therefore

A vector space with a basis consisting of a finite number of elements, or the zero vector space, is called a finite dimensional.

Some Basic Definitions

We will define the dimension of a vector space V over K

As the number of elements in the basis.

- Denoted by $\operatorname{dim}_{K} V$, or simply $\operatorname{dim} V$

Therefore

A vector space with a basis consisting of a finite number of elements, or the zero vector space, is called a finite dimensional.

Now

Is this number unique?

Maximal Set of Linearly Independent Elements

Theorem

Let V be a vector space, and $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right\}$ a maximal set of linearly independent elements of V. Then, $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right\}$ is a basis of V.

Maximal Set of Linearly Independent Elements

Theorem

Let V be a vector space, and $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right\}$ a maximal set of linearly independent elements of V. Then, $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right\}$ is a basis of V.

Maximal Set of Linearly Independent Elements

Theorem

Let V be a vector space, and $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right\}$ a maximal set of linearly independent elements of V. Then, $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right\}$ is a basis of V.

Theorem

Let V be a vector space of dimension n, and let $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}$ be linearly independent elements of V. Then, $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}$ constitutes a basis of V.

Equality between Basis

Corollary
Let V be a vector space and let W be a subspace. If $\operatorname{dim} W=\operatorname{dim} V$ then $V=W$.

Equality between Basis

Corollary

Let V be a vector space and let W be a subspace. If $\operatorname{dim} W=\operatorname{dim} V$ then $V=W$.

Corollary

Let V be a vector space of dimension n. Let r be a positive integer with $r<n$, and let $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{r}$ be linearly independent elements of V . Then one can find elements $\boldsymbol{v}_{r+1}, \boldsymbol{v}_{r+2}, \ldots, \boldsymbol{v}_{n}$ such that $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right\}$ is a basis of V.

Finally

Theorem

Let V be a vector space having a basis consisting of n elements. Let W be a subspace which does not consist of O alone. Then W has a basis, and the dimension of W is $\leq n$.

Outline

- Why and What?
- A Little Bit of History

2) Matrices and Gaussian Elimination

- Introduction
- The Geometry of Linear Equations
- Example
- Column Vectors and Linear Combinations
- The Singular Case
- An Example of Gaussian Elimination
- Fixing some problems of Singularity
- The Cost Of Elimination
- Convert Everything into Matrix Multiplications
- Example of Using Elementary Matrices
(3) Vector Space
- Introduction
- Classic Example. The Matrix Space $\mathbb{R}^{n \times m}$
- Some Notes in Notation
- Sub-spaces and Linear Combinations
- Recognizing Sub-spaces
- Linear Combinations
- Spanned Space
(4) Basis and Dimensions
- Basis
- Coordinates
- Basis and Dimensions

(5) Fundamental Spaces

- Introduction
- Examples Using a Specific Matrix

We have

Given a Matrix A of $m \times n$

- And it has been reduced to a a Echelon or Reduced Version...

We have

Given a Matrix A of $m \times n$

- And it has been reduced to a a Echelon or Reduced Version...

It is possible to find the subspaces associated A

- Here, we introduce the concept of rank

We have

Given a Matrix A of $m \times n$

- And it has been reduced to a a Echelon or Reduced Version...

It is possible to find the subspaces associated A

- Here, we introduce the concept of rank

Definition

- the rank of a matrix A is the dimension of the vector space generated (or spanned) by its columns.

Here

We have

- When the rank is as large as possible, $r=n$ or $r=m$ or $r=m=n$, the matrix has a left-inverse B or a right-inverse C or a two-sided A^{-1}.

Here

We have

- When the rank is as large as possible, $r=n$ or $r=m$ or $r=m=n$, the matrix has a left-inverse B or a right-inverse C or a two-sided A^{-1}.

Then, we have the following subspaces
(1) The column space of A is denoted by $C(A)$ is a subspace of \mathbb{R}^{m}.

- Its dimension is the rank r.

Here

We have

- When the rank is as large as possible, $r=n$ or $r=m$ or $r=m=n$, the matrix has a left-inverse B or a right-inverse C or a two-sided A^{-1}.

Then, we have the following subspaces

(1) The column space of A is denoted by $C(A)$ is a subspace of \mathbb{R}^{m}.

- Its dimension is the rank r.
(2) The null space of A is denoted by $N(A)$ is a subspace of \mathbb{R}^{n}.
- It contains all vectors \boldsymbol{y} such that $A \boldsymbol{y}=0$.
- Its dimension is $n-r$.

Here

We have

- When the rank is as large as possible, $r=n$ or $r=m$ or $r=m=n$, the matrix has a left-inverse B or a right-inverse C or a two-sided A^{-1}.

Then, we have the following subspaces

(1) The column space of A is denoted by $C(A)$ is a subspace of \mathbb{R}^{m}.

- Its dimension is the rank r.
(2) The null space of A is denoted by $N(A)$ is a subspace of \mathbb{R}^{n}.
- It contains all vectors \boldsymbol{y} such that $A \boldsymbol{y}=0$.
- Its dimension is $n-r$.
(3) The row space of A is the column space of $A^{T}(n \times m)$, a subspace of \mathbb{R}^{n}.
- It is $C\left(A^{T}\right)$, and it is spanned by the rows of A.
- Its dimension is also r.

Here

We have

- When the rank is as large as possible, $r=n$ or $r=m$ or $r=m=n$, the matrix has a left-inverse B or a right-inverse C or a two-sided A^{-1}.

Then, we have the following subspaces

(1) The column space of A is denoted by $C(A)$ is a subspace of \mathbb{R}^{m}.

- Its dimension is the rank r.
(2) The null space of A is denoted by $N(A)$ is a subspace of \mathbb{R}^{n}.
- It contains all vectors \boldsymbol{y} such that $A \boldsymbol{y}=0$.
- Its dimension is $n-r$.
(3) The row space of A is the column space of $A^{T}(n \times m)$, a subspace of \mathbb{R}^{n}.
- It is $C\left(A^{T}\right)$, and it is spanned by the rows of A.
- Its dimension is also r.
(9) The left null space of A is the nullspace of A^{T} and subspace of \mathbb{R}^{m}.
(1) It contains all vectors \boldsymbol{y} such that $A^{T} \boldsymbol{y}=0$, and it is written $N\left(A^{T}\right)$.

Now

If A is an $m \times n$ matrix

- We have a host spaces that contains these fundamental subspaces.

Now

If A is an $m \times n$ matrix

- We have a host spaces that contains these fundamental subspaces.

First

- The nullspace $N(A)$ and row space $C\left(A^{T}\right)$ are subspaces of \mathbb{R}^{n}.

Now

If A is an $m \times n$ matrix

- We have a host spaces that contains these fundamental subspaces.

First

- The nullspace $N(A)$ and row space $C\left(A^{T}\right)$ are subspaces of \mathbb{R}^{n}.

Second

- The left nullspace $N\left(A^{T}\right)$ and column space $C(A)$ are subspaces of \mathbb{R}^{m}.

Example

If we have

$$
A=U=R=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Example

If we have

$$
A=U=R=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Here, the Column space is the line through

$$
\boldsymbol{x}_{1}=\binom{1}{0}
$$

Example

If we have

$$
A=U=R=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Here, the Column space is the line through

$$
\boldsymbol{x}_{1}=\binom{1}{0}
$$

The Row space is the line through

$$
\boldsymbol{x}_{2}=\left(\begin{array}{lll}
1 & 0 & 0
\end{array}\right)^{T}
$$

Here a Curious Situation

We have that $N(A)$ contains

$$
\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \text { and }\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

Here a Curious Situation

We have that $N(A)$ contains

$$
\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \text { and }\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

What about $N\left(A^{T}\right)$?
Any Idea?

Outline

- Why and What?
- A Little Bit of History
(2) Matrices and Gaussian Elimination
- Introduction
- The Geometry of Linear Equations
- Example
- Column Vectors and Linear Combinations
- The Singular Case
- An Example of Gaussian Elimination
- Fixing some problems of Singularity
- The Cost Of Elimination
- Convert Everything into Matrix Multiplications
- Example of Using Elementary Matrices
(3) Vector Space
- Introduction
- Classic Example, The Matrix Space $\mathbb{R}^{n \times m}$
- Some Notes in Notation
- Sub-spaces and Linear Combinations
- Recognizing Sub-spaces
- Linear Combinations
- Spanned Space
(4) Basis and Dimensions
- Basis
- Coordinates
- Basis and Dimensions
(5) Fundamental Spaces
- Introduction
- Examples Using a Specific Matrix
- Fundamental Theorem of Linear Algebra
- Existence of Inverses

We have

Our Basic Matrix

$$
A=\left(\begin{array}{cccc}
1 & 3 & 3 & 2 \\
2 & 6 & 9 & 7 \\
-1 & -3 & 3 & 4
\end{array}\right)
$$

We have

Our Basic Matrix

$$
A=\left(\begin{array}{cccc}
1 & 3 & 3 & 2 \\
2 & 6 & 9 & 7 \\
-1 & -3 & 3 & 4
\end{array}\right)
$$

Therefore, we have the Reduced Matrix After Gaussian Elimination

$$
U=\left(\begin{array}{llll}
1 & 3 & 3 & 2 \\
0 & 0 & 3 & 3 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

We have

Something Notable

- For an echelon matrix like U, the row space is clear.

We have

Something Notable

- For an echelon matrix like U, the row space is clear.

It contains all combinations of the rows

- However, the third Row does not adds anything!!!

We have

Something Notable

- For an echelon matrix like U, the row space is clear.

It contains all combinations of the rows

- However, the third Row does not adds anything!!!

Thus

- A similar rule applies to every echelon matrix U, with r pivots and r nonzero rows.

Affirmation

Something Notable

- The row space of A has the same dimension r as the row space of U, and it has the same bases.

Affirmation

Something Notable

- The row space of A has the same dimension r as the row space of U, and it has the same bases.

Why?

- The reason is that each elementary operation leaves the row space unchanged.

Affirmation

Something Notable

- The row space of A has the same dimension r as the row space of U, and it has the same bases.

Why?

- The reason is that each elementary operation leaves the row space unchanged.

Further

- The rows in U are combinations of the original rows in A .
- The row space of U contains nothing new.

Furthermore

Something Notable

- Every step can be reversed, nothing is lost!!!
- The rows of A can be recovered from U.

Furthermore

Something Notable

- Every step can be reversed, nothing is lost!!!
- The rows of A can be recovered from U.

Finally

- It is true that A and U have different rows, but the combinations of the rows are identical!!!
- SAME SPACE!!!

We have

Something Notable

- Elimination simplifies a system of linear equations without changing the solutions.

We have

Something Notable

- Elimination simplifies a system of linear equations without changing the solutions.

After all

$$
A \boldsymbol{x}=0 \longrightarrow U \boldsymbol{x}=0
$$

- Which is a reversible process...

We have

Something Notable

- Elimination simplifies a system of linear equations without changing the solutions.

After all

$$
A \boldsymbol{x}=0 \longrightarrow U \boldsymbol{x}=0
$$

- Which is a reversible process...

Therefore

- The null space of A is the same as the null space of U.

Given

Only r of the equations $A x=0$ are independent.

- We can see that...

Given

Only r of the equations $A x=0$ are independent.

- We can see that...

Thus, choosing the $n-r$ "special solutions" to $A \boldsymbol{x}=0$

- The null space $N(A)$ has dimension $n-r$.

Given

Only r of the equations $A x=0$ are independent.

- We can see that...

Thus, choosing the $n-r$ "special solutions" to $A \boldsymbol{x}=0$

- The null space $N(A)$ has dimension $n-r$.

The "special solutions" are a basis

- Each free variable is given the value 1 , while the other free variables are 0.

Thus, we have

Then $A \boldsymbol{x}=0$ or $U \boldsymbol{x}=0$
Using Back Substitution we can obtain the variables

$$
U=\left(\begin{array}{llll}
1 & 3 & 3 & 2 \\
0 & 0 & 3 & 3 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Thus, we have

Then $A \boldsymbol{x}=0$ or $U \boldsymbol{x}=0$
Using Back Substitution we can obtain the variables

$$
U=\left(\begin{array}{llll}
1 & 3 & 3 & 2 \\
0 & 0 & 3 & 3 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

This is exactly the way we have been solving $U x=0$

- The basic example above has pivots in columns 1 and 3.

Thus, we have
Then $A \boldsymbol{x}=0$ or $U \boldsymbol{x}=0$
Using Back Substitution we can obtain the variables

$$
U=\left(\begin{array}{llll}
1 & 3 & 3 & 2 \\
0 & 0 & 3 & 3 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

This is exactly the way we have been solving $U x=0$

- The basic example above has pivots in columns 1 and 3 .

Remember

$$
U=\left(\begin{array}{llll}
1 & 3 & 3 & 2 \\
0 & 0 & 3 & 3 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Therefore its free variables are the second and fourth

$$
\text { Special Solutions } \boldsymbol{x}_{1}=\left(\begin{array}{c}
-3 \\
1 \leftarrow \\
0 \\
0 \leftarrow
\end{array}\right), \boldsymbol{x}_{2}=\left(\begin{array}{c}
1 \\
0 \leftarrow \\
-1 \\
1 \leftarrow
\end{array}\right)
$$

Then

Therefore its free variables are the second and fourth

$$
\text { Special Solutions } \boldsymbol{x}_{1}=\left(\begin{array}{c}
-3 \\
1 \leftarrow \\
0 \\
0 \leftarrow
\end{array}\right), \boldsymbol{x}_{2}=\left(\begin{array}{c}
1 \\
0 \leftarrow \\
-1 \\
1 \leftarrow
\end{array}\right)
$$

Any combinationc $c_{1} x_{1}+c_{2} x_{2}$

- It has c_{1} as its second component, and c_{2} as its fourth component.

Therefore

The only way to have $c_{1} x_{1}+c_{2} x_{2}=0$

- It can only be when $c_{1}=c_{2}=0!!!$

Therefore

The only way to have $c_{1} x_{1}+c_{2} x_{2}=0$

- It can only be when $c_{1}=c_{2}=0!!!$

They are basis for the null space because

$$
\left(\begin{array}{cccc}
1 & 3 & 3 & 2 \\
0 & 0 & 3 & 3 \\
0 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{c}
-3 \\
1 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right),\left(\begin{array}{llll}
1 & 3 & 3 & 2 \\
0 & 0 & 3 & 3 \\
0 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{c}
1 \\
0 \\
-1 \\
1
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

Additionally

The null space is also called the kernel of A

- Its dimension $n-r$ is the nullity.

Now, we have

The column space is sometimes called the range

- After all you can define linear functions using matrices

$$
f_{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, \text { with } f_{A}(\boldsymbol{x})=A \boldsymbol{x}
$$

Now, we have

The column space is sometimes called the range

- After all you can define linear functions using matrices

$$
f_{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, \text { with } f_{A}(\boldsymbol{x})=A \boldsymbol{x}
$$

Then

(1) Its domain consists of all \boldsymbol{x} in \mathbb{R}^{n}.
(2) Its range is all possible vectors $f_{A}(\boldsymbol{x})=A \boldsymbol{x}$.

Now, we have

The column space is sometimes called the range

- After all you can define linear functions using matrices

$$
f_{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, \text { with } f_{A}(\boldsymbol{x})=A \boldsymbol{x}
$$

Then

(1) Its domain consists of all \boldsymbol{x} in \mathbb{R}^{n}.
(2) Its range is all possible vectors $f_{A}(\boldsymbol{x})=A \boldsymbol{x}$.

Our problem is to find bases for the column spaces of U and A

- Those spaces are different, but their dimensions are the same

Example

Remember

$$
U=\left(\begin{array}{llll}
1 & 3 & 3 & 2 \\
0 & 0 & 3 & 3 \\
0 & 0 & 0 & 0
\end{array}\right), A=\left(\begin{array}{cccc}
1 & 3 & 3 & 2 \\
2 & 6 & 9 & 7 \\
-1 & -3 & 3 & 4
\end{array}\right)
$$

Example

Remember

$$
U=\left(\begin{array}{llll}
1 & 3 & 3 & 2 \\
0 & 0 & 3 & 3 \\
0 & 0 & 0 & 0
\end{array}\right), A=\left(\begin{array}{cccc}
1 & 3 & 3 & 2 \\
2 & 6 & 9 & 7 \\
-1 & -3 & 3 & 4
\end{array}\right)
$$

The first and third columns of U are a basis for its column space

- The first and third columns of U are a basis for its column space.

Example

Remember

$$
U=\left(\begin{array}{llll}
1 & 3 & 3 & 2 \\
0 & 0 & 3 & 3 \\
0 & 0 & 0 & 0
\end{array}\right), A=\left(\begin{array}{cccc}
1 & 3 & 3 & 2 \\
2 & 6 & 9 & 7 \\
-1 & -3 & 3 & 4
\end{array}\right)
$$

The first and third columns of U are a basis for its column space

- The first and third columns of U are a basis for its column space.
- Every other column is a combination of those two!!!

Example

Remember

$$
U=\left(\begin{array}{llll}
1 & 3 & 3 & 2 \\
0 & 0 & 3 & 3 \\
0 & 0 & 0 & 0
\end{array}\right), A=\left(\begin{array}{cccc}
1 & 3 & 3 & 2 \\
2 & 6 & 9 & 7 \\
-1 & -3 & 3 & 4
\end{array}\right)
$$

The first and third columns of U are a basis for its column space

- The first and third columns of U are a basis for its column space.
- Every other column is a combination of those two!!!

The pivot columns of A are a basis for its column space

- The second column is three times the first, just as in U.

Example

Remember

$$
U=\left(\begin{array}{llll}
1 & 3 & 3 & 2 \\
0 & 0 & 3 & 3 \\
0 & 0 & 0 & 0
\end{array}\right), A=\left(\begin{array}{cccc}
1 & 3 & 3 & 2 \\
2 & 6 & 9 & 7 \\
-1 & -3 & 3 & 4
\end{array}\right)
$$

The first and third columns of U are a basis for its column space

- The first and third columns of U are a basis for its column space.
- Every other column is a combination of those two!!!

The pivot columns of A are a basis for its column space

- The second column is three times the first, just as in U.
- The fourth column equals (column 3) - (column 1).

Further

The same null space is telling us those dependencies

- The reason is this

$$
A \boldsymbol{x}=0 \Leftrightarrow U \boldsymbol{x}=0
$$

Further

The same null space is telling us those dependencies

- The reason is this

$$
A \boldsymbol{x}=0 \Leftrightarrow U \boldsymbol{x}=0
$$

Every linear dependence $A \boldsymbol{x}=0$ among the columns of A

- It is matched by a dependence $U \boldsymbol{x}=0$ among the columns of U, with exactly the same coefficients.

Further

The same null space is telling us those dependencies

- The reason is this

$$
A \boldsymbol{x}=0 \Leftrightarrow U \boldsymbol{x}=0
$$

Every linear dependence $A \boldsymbol{x}=0$ among the columns of A

- It is matched by a dependence $U \boldsymbol{x}=0$ among the columns of U, with exactly the same coefficients.

Theorem

If a set of columns of A is independent, then so are the corresponding columns of U, and vice versa.

Now

To find a basis for the column space $C(A)$, we use what is already done for U

- The r columns containing pivots are a basis for the column space of U.

Now

To find a basis for the column space $C(A)$, we use what is already done for U

- The r columns containing pivots are a basis for the column space of U.

Something Notable

- We will pick those same r columns in A.

Now

To find a basis for the column space $C(A)$, we use what is already done for U

- The r columns containing pivots are a basis for the column space of U.

Something Notable

- We will pick those same r columns in A.

Observation

- The dimension of the column space $C(A)$ equals the rank r, which also equals the dimension of the row space.

Finally

Theorem

- The number of independent columns equals the number of independent rows.

Finally

Theorem

- The number of independent columns equals the number of independent rows.

Something Notable

- A basis for $C(A)$ is formed by the r columns of A that correspond, in U, to the columns containing pivots.

Finally

Theorem

- The number of independent columns equals the number of independent rows.

Something Notable

- A basis for $C(A)$ is formed by the r columns of A that correspond, in U, to the columns containing pivots.

It also says something about square matrices

- If the rows of a square matrix are linearly independent, then so are the columns (and vice versa).

How?
both the row and column spaces of U have dimension $r=3$

$$
U=\left(\begin{array}{cccccc}
d_{1} & * & * & * & * & * \\
0 & 0 & 0 & d_{2} & * & * \\
0 & 0 & 0 & 0 & 0 & d_{3} \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

How?

both the row and column spaces of U have dimension $r=3$

$$
U=\left(\begin{array}{cccccc}
d_{1} & * & * & * & * & * \\
0 & 0 & 0 & d_{2} & * & * \\
0 & 0 & 0 & 0 & 0 & d_{3} \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

We claim that U also has three independent columns, and no more

- We notice, the columns have only three nonzero components.

How?
both the row and column spaces of U have dimension $r=3$

$$
U=\left(\begin{array}{cccccc}
d_{1} & * & * & * & * & * \\
0 & 0 & 0 & d_{2} & * & * \\
0 & 0 & 0 & 0 & 0 & d_{3} \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

We claim that U also has three independent columns, and no more

- We notice, the columns have only three nonzero components.

If we can show that the pivot columns are linearly independent

- They must be a basis!!!

Then

Suppose, we have

$$
c_{1}\left(\begin{array}{c}
d_{1} \\
0 \\
0 \\
0
\end{array}\right)+c_{2}\left(\begin{array}{c}
* \\
d_{2} \\
0 \\
0
\end{array}\right)+c_{3}\left(\begin{array}{c}
* \\
* \\
d_{3} \\
0
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right)
$$

Then

Suppose, we have

$$
c_{1}\left(\begin{array}{c}
d_{1} \\
0 \\
0 \\
0
\end{array}\right)+c_{2}\left(\begin{array}{c}
* \\
d_{2} \\
0 \\
0
\end{array}\right)+c_{3}\left(\begin{array}{c}
* \\
* \\
d_{3} \\
0
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right)
$$

Back Substitution

Look at the Board...

Now

Since

- $A \boldsymbol{x}=0$ if and only if $U \boldsymbol{x}=0$.

Now

Since

- $A \boldsymbol{x}=0$ if and only if $U \boldsymbol{x}=0$.

The first, fourth, and sixth columns of A

- They are a basis for $C(A)$.

We can call this as

The null space of A^{T}

- If A is an $m \times n$ matrix $\Longrightarrow A^{T}$ is a $n \times m$ matrix.

We can call this as

The null space of A^{T}

- If A is an $m \times n$ matrix $\Longrightarrow A^{T}$ is a $n \times m$ matrix.

Thus, its null space is a subspace of \mathbb{R}^{m}
We have:
(1) $\boldsymbol{y}^{T} A=0$
(2) $A^{T} \boldsymbol{y}=0$

We can call this as

The null space of A^{T}

- If A is an $m \times n$ matrix $\Longrightarrow A^{T}$ is a $n \times m$ matrix.

Thus, its null space is a subspace of \mathbb{R}^{m}
We have:
(1) $\boldsymbol{y}^{T} A=0$
(2) $A^{T} \boldsymbol{y}=0$

Example

$$
\boldsymbol{y}^{T} A=\left[y_{1}, \cdots, y_{m}\right] A=[0 \cdots 0]
$$

What is the dimension of the Null Space $N\left(A^{T}\right)$

For any matrix

- The number of pivot variables plus the number of free variables must match the total number of columns.

What is the dimension of the Null Space $N\left(A^{T}\right)$

For any matrix

- The number of pivot variables plus the number of free variables must match the total number of columns.

In other words
dimension of $C(A)+$ dimension of $N(A)=$ number of columns

What is the dimension of the Null Space $N\left(A^{T}\right)$

For any matrix

- The number of pivot variables plus the number of free variables must match the total number of columns.

In other words
dimension of $C(A)+$ dimension of $N(A)=$ number of columns

This law applies to A^{T} which has m columns, then

$$
r+\operatorname{dimension}\left(N\left(A^{T}\right)\right)=m
$$

Thus

The left nullspace $N\left(A^{T}\right)$

- It has dimension $m-r$

Outline

- Why and What?
- A Little Bit of History
(2) Matrices and Gaussian Elimination
- Introduction
- The Geometry of Linear Equations
- Example
- Column Vectors and Linear Combinations
- The Singular Case
- An Example of Gaussian Elimination
- Fixing some problems of Singularity
- The Cost Of Elimination
- Convert Everything into Matrix Multiplications
- Example of Using Elementary Matrices
- Introduction
- Classic Example, The Matrix Space $\mathbb{R}^{n \times m}$
- Some Notes in Notation
- Sub-spaces and Linear Combinations
- Recognizing Sub-spaces
- Linear Combinations
- Spanned Space
(4) Basis and Dimensions
- Basis
- Coordinates
- Basis and Dimensions
(5) Fundamental Spaces
- Introduction
- Examples Using a Specific Matrix
- Fundamental Theorem of Linear Algebra
- Existence of Inverses

Fundamental Theorem of Linear Algebra

Given A

(1) $C(A)=$ column space of A; dimension r

Fundamental Theorem of Linear Algebra

Given A

(1) $C(A)=$ column space of A; dimension r
(2) $N(A)=$ null space space of A; dimension $n-r$

Fundamental Theorem of Linear Algebra

Given A

(1) $C(A)=$ column space of A; dimension r
(2) $N(A)=$ null space space of A; dimension $n-r$
(3) $C\left(A^{T}\right)=$ row space of A; dimension r

Fundamental Theorem of Linear Algebra

Given A

(1) $C(A)=$ column space of A; dimension r
(2) $N(A)=$ null space space of A; dimension $n-r$
(3) $C\left(A^{T}\right)=$ row space of A; dimension r
(9) $N\left(A^{T}\right)=$ column space of A; dimension r

Outline

- Why and What?
- A Little Bit of History

2) Matrices and Gaussian Elimination

- Introduction
- The Geometry of Linear Equations
- Example
- Column Vectors and Linear Combinations
- The Singular Case
- An Example of Gaussian Elimination
- Fixing some problems of Singularity
- The Cost Of Elimination
- Convert Everything into Matrix Multiplications
- Example of Using Elementary Matrices
- Introduction
- Classic Example, The Matrix Space $\mathbb{R}^{n \times m}$
- Some Notes in Notation
- Sub-spaces and Linear Combinations
- Recognizing Sub-spaces
- Linear Combinations
- Spanned Space

4 Basis and Dimensions

- Basis
- Coordinates
- Basis and Dimensions
(5) Fundamental Spaces
- Introduction
- Examples Using a Specific Matrix
- Fundamental Theorem of Linear Algebra
- Existence of Inverses

三

We have the following situation

We know that if A has a left-inverse $(B A=I)$ and a right-inverse $(A C=I)$

$$
B=B I=B(A C)=(B A) C=C
$$

We have the following situation

We know that if A has a left-inverse $(B A=I)$ and a right-inverse $(A C=I)$

$$
B=B I=B(A C)=(B A) C=C
$$

Now, from the rank of a matrix

- We can decide if the matrix has these inverses.

We have the following situation

We know that if A has a left-inverse $(B A=I)$ and a right-inverse $(A C=I)$

$$
B=B I=B(A C)=(B A) C=C
$$

Now, from the rank of a matrix

- We can decide if the matrix has these inverses.

Properties

- An inverse exists only when the rank is as large as possible.

First

The rank always satisfies $r \leq m$ and also $r \leq n$

- Thus, an m by n matrix cannot have more than m independent rows or n independent columns.

First

The rank always satisfies $r \leq m$ and also $r \leq n$

- Thus, an m by n matrix cannot have more than m independent rows or n independent columns.

There is not space for more than m pivots, or more than n
(1) When $r=m$ there is a right-inverse, and $A x=b$ always has a solution.

First

The rank always satisfies $r \leq m$ and also $r \leq n$

- Thus, an m by n matrix cannot have more than m independent rows or n independent columns.

There is not space for more than m pivots, or more than n
(1) When $r=m$ there is a right-inverse, and $A x=b$ always has a solution.
(2) When $r=n$ there is a left-inverse, and the solution (if it exists) is unique.

First

The rank always satisfies $r \leq m$ and also $r \leq n$

- Thus, an m by n matrix cannot have more than m independent rows or n independent columns.

There is not space for more than m pivots, or more than n
(1) When $r=m$ there is a right-inverse, and $A x=b$ always has a solution.
(2) When $r=n$ there is a left-inverse, and the solution (if it exists) is unique.

Only a square matrix

- It can have both $r=m$ and $r=n$, and therefore only a square matrix can achieve both existence and uniqueness.

EXISTENCE

Full row rank $r=m$

- Then, $A \boldsymbol{x}=\boldsymbol{b}$ has at least one solution \boldsymbol{x} for every b if and only if the columns span \mathbb{R}^{m}

EXISTENCE

Full row rank $r=m$

- Then, $A \boldsymbol{x}=\boldsymbol{b}$ has at least one solution \boldsymbol{x} for every b if and only if the columns span \mathbb{R}^{m}

Therefore

- Then A has a right-inverse C such that $A C=I_{m}(m \times m)$.

EXISTENCE

Full row rank $r=m$

- Then, $A \boldsymbol{x}=\boldsymbol{b}$ has at least one solution \boldsymbol{x} for every b if and only if the columns span \mathbb{R}^{m}

Therefore

- Then A has a right-inverse C such that $A C=I_{m}(m \times m)$.

Therefore

- This is possible only if $m \leq n$.

UNIQUENESS

Full column rank $r=n$

- $A \boldsymbol{x}=b$ has at most one solution x for every b if and only if the columns are linearly independent.

UNIQUENESS

Full column rank $r=n$

- $A \boldsymbol{x}=b$ has at most one solution x for every b if and only if the columns are linearly independent.

Then A has an $n \times m$ left-inverse B

$$
B A=I_{n}
$$

UNIQUENESS

Full column rank $r=n$

- $A \boldsymbol{x}=b$ has at most one solution x for every b if and only if the columns are linearly independent.

Then A has an $n \times m$ left-inverse B

$$
B A=I_{n}
$$

Properties

- Then A has an $n \times m$ left-inverse B such that $B A=I_{n}$ only if $m \geq n$.

Existence Case

Once possible solution is $x=C b$

- Then, $A \boldsymbol{x}=A C \boldsymbol{b}=\boldsymbol{b}$

Existence Case

Once possible solution is $x=C b$

- Then, $A \boldsymbol{x}=A C \boldsymbol{b}=\boldsymbol{b}$

Something Notable

- But there will be other solutions if there are other right-inverses.

Existence Case

Once possible solution is $x=C b$

- Then, $A \boldsymbol{x}=A C \boldsymbol{b}=\boldsymbol{b}$

Something Notable

- But there will be other solutions if there are other right-inverses.

Finally

- The number of solutions when the columns span \mathbb{R}^{m} is 1 to ∞.

In the uniqueness case

If there is a solution to $A \boldsymbol{x}=\boldsymbol{b}$

- It has to be $\boldsymbol{x}=B A \boldsymbol{x}=B \boldsymbol{b}$

In the uniqueness case

If there is a solution to $A \boldsymbol{x}=\boldsymbol{b}$

- It has to be $\boldsymbol{x}=B A \boldsymbol{x}=B \boldsymbol{b}$

But there may be no solution

- The number of solutions is 0 or 1 .

In the uniqueness case

If there is a solution to $A \boldsymbol{x}=\boldsymbol{b}$

- It has to be $\boldsymbol{x}=B A \boldsymbol{x}=B \boldsymbol{b}$

But there may be no solution

- The number of solutions is 0 or 1 .

There are simple formulas for the best left and right inverses

$$
B=\left(A^{T} A\right)^{-1} A \text { and } C=A^{T}\left(A A^{T}\right)^{-1}
$$

Therefore

Certainly $B A=I$ and $A C=I$

- Look at the Board

Therefore

Certainly $B A=I$ and $A C=I$

- Look at the Board

Something Notable

- What is not so certain is that $A^{T} A$ and $A A^{T}$ are actually invertible.

Finally

Something Notable

- A rectangular matrix cannot have both existence and uniqueness.

Finally

Something Notable

- A rectangular matrix cannot have both existence and uniqueness.

Why?

- If m is different from n, we cannot have $r=m$ and $r=n$.

A square matrix is the opposite

Something Notable

- If $m=n$, we cannot have one property without the other.

A square matrix is the opposite

Something Notable

- If $m=n$, we cannot have one property without the other.

Furthermore

- A square matrix has a left-inverse if and only if it has a right-inverse.

A square matrix is the opposite

Something Notable

- If $m=n$, we cannot have one property without the other.

Furthermore

- A square matrix has a left-inverse if and only if it has a right-inverse.

Another Condition

- The condition for invertibility is full rank: $r=m=n$.

Thus

Each of these conditions is a necessary and sufficient test

(1) The columns span \mathbb{R}^{n}, so $A x=b$ has at least one solution for every b.
(2) The columns are independent, so $A x=0$ has only the solution $x=0$.

We have a longer list

The following conditions are equivalent
(1) The rows of A span \mathbb{R}^{n}.

We have a longer list

The following conditions are equivalent
(1) The rows of A span \mathbb{R}^{n}.
(2) The rows are linearly independent.

We have a longer list

The following conditions are equivalent
(1) The rows of A span \mathbb{R}^{n}.
(2) The rows are linearly independent.
(3) Elimination can be completed: $P A=L D U$, with all n pivots.

We have a longer list

The following conditions are equivalent
(1) The rows of A span \mathbb{R}^{n}.
(2) The rows are linearly independent.
(3) Elimination can be completed: $P A=L D U$, with all n pivots.
(9) The determinant of A is not zero.

We have a longer list

The following conditions are equivalent
(1) The rows of A span \mathbb{R}^{n}.
(2) The rows are linearly independent.
(3) Elimination can be completed: $P A=L D U$, with all n pivots.
(9) The determinant of A is not zero.
(c) Zero is not an eigenvalue of A.

We have a longer list

The following conditions are equivalent
(1) The rows of A span \mathbb{R}^{n}.
(2) The rows are linearly independent.
(3) Elimination can be completed: $P A=L D U$, with all n pivots.
(9) The determinant of A is not zero.
(0) Zero is not an eigenvalue of A.
(0) $A^{T} A$ is positive definite.

