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Introduction

What is this class about?
It is clear that the use of mathematics is essential for Artificial
Intelligence.

Therefore...
The understanding of Mathematical Modeling is part of the deal...

If you want to be
A Good Practitioner of Artificial Intelligence!!!
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Example

Imagine
A web surfer moves from a web page to another web page...

Question: How do you model this?

You can use a graph!!!
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Now

Add Some Probabilities
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Thus

We can build a matrix

M =


P11 P12 · · · P1N
P21 P22 · · · P2N
... ... . . . ...

PN1 PN2 · · · PNN

 (1)

Thus, it is possible to obtain certain information by looking at the
eigenvector and eigenvalues
These vectors v′λs and values λ′s have the property that

Mvλ = λvλ (2)
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This is the Basis of Page Rank in Google

Imagine a small Web!!! Really Small...
 

0

1

2

We have the following Stochastic Matrix

P =

 1− p 1− p 0
p (1− p) p (1− p) 1− p

p2 p2 p

 (3)
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Therefore, we can use that

To describe the transition in the Markov Chain
Let pt ∈ Rn is the distribution matrix of Xt at time t

(pt)i = P (Xt = i) (4)

Then moving from a distribution to another one we have

pt+1 = P pt (5)
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Here, the Idea of Positive Matrix

Basic Definition
A matrix is called positive if all its entries are positive.
Non-negative, if all its entries are non-negative.

Basic Facts
If A ≥ 0 (Element wise) with A ∈ Rn×n and z ≥ 0 with z ∈ Rn, then
Az ≥ 0

Matrix Multiplication preserves non-negativity!!!

Regularity
Given A ∈ Rn×n with A ≥ 0, then A is called regular if some k ≥ 1,
Ak > 0.
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Path Property

Meaning of the Previous Definition
From a directed graph on nodes 1, ..., n with an arc from i to j whenever
Aij ≥ 0 then(

Ak
)
ij
>0 if and only if there is a path of length k from i to j.

Something Notable
A is regular if for some k there is a path of length k from every node to
every other node.
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Perron-Frobenius Theorem for Regular Matrices

Theorem
Suppose A ∈ Rn×n is nonnegative and regular, i.e., Ak > 0 for some k.

Then
1 There is an eigenvalue λpf of A that is real and positive, with positive

left and right eigenvectors.
2 For any other eigenvalue λ, we have |λ| < λpf .
3 The eigenvalue λpf is simple, i.e., has multiplicity one, and

corresponds to a 1× 1 Jordan block.
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Now, given our matrix P

Given P a stochastic matrix

Let π a Perron-Frobenius right eigenvector of P with π ≥ 0 and
1Tπ = 1.

Such that Pπ = π

Then π corresponds to an invariant distribution or equilibrium
distribution of the Markov chain for the eigenvalue 1.

Assume that
That P is regular then i.e. that for some k P k > 0.
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Thus

If we can force P to be regular
There is unique distribution π such that π > 0.

Something Notable
The eigenvalue 1 is simple and dominant.
Thus, we have pt → π no matter what the initial distribution p0
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Thus, a Simple Algorithms

We have a simple method
Repeatedly apply pt+1 = P pt until convergence to π.

This is a method called
The Power Method

Naive and expensive but
Stable!!!
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About 4000 years ago

Babylonians knew how to solve the following kind of systems

ax+ by = c

dx+ ey = f

As always the first steps in any field of knowledge tend to be slow
It is only after the death of Plato and Aristotle, that the Chinese (Nine
Chapters of the Mathematical Art 200 B.C.) were able to solve 3× 3
system.

By working an “elimination method”
Similar to the one devised by Gauss 2000 years later for general systems.
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Not only that

The Matrix
Gauss defined implicitly the concept of a Matrix as linear transformations
in his book “Disquisitions.”

The Final Definition of Matrix
It was introduced by Cayley in two papers in 1850 and 1858 respectively,
which allowed him to prove the important Cayley-Hamilton Theorem.

There is quite a lot
Kleiner, I., A History of Abstract Algebra (Birkhäuser Boston, 2007).
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Matrix can help to represent many things

They are important for many calculations as

a11x1 + a12x2 + ...+ a1nxn =b1,

a21x1 + a22x2 + ...+ a2nxn =b2,

· · · · · · · · · · · · · · · · · · · · · · · ·
am1x1 + am2x2 + ...+ amnxn =b2.

It is clear
We would like to collect those linear equations in a compact structure that
allows for simpler manipulation.
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Therefore, we have

For example

x =


x1
x2
...
xn

 , b =


b1
b2
...
bn

 and A =


a11 a12 · · · a1n
a21 a22 · · · a2n
... ... . . . ...

am1 am2 · · · amn


Using a little of notation

Ax = b
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Furthermore

Many Times
We use the concept of transpose a lot in many Linear Algebra
Applications...

Definition
The transpose of matrix A is an operation that flips the matrix over
its diagonal. Formally, the ith and jth column element of A is the jth
row and ith column element of A:[

AT
]
ij

= [A]ji

I If A is an m× n matrix, then AT is an n×m matrix.
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Solving Linear Equations

We have n equations in n unknowns

1x+ 2y = 3
4x+ 5y = 6

How do we solve this?
We have two possibilities
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Elimination

We can do the following
Equation 2 - 4×Equation 1 =⇒ −3y = −6

Back-Substition
1x+ 2× 2 = 3 =⇒ x = −1

Therefore

1 (−1) + 2 (2) = −3
4 (−1) + 5 (2) = 6
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Determinants

There are a series of equations based on determinants

y =

∣∣∣∣∣ 1 3
4 6

∣∣∣∣∣∣∣∣∣∣ 1 2
4 5

∣∣∣∣∣
= 1× 6− 3× 4

1× 5− 2× 4 = −6
−3 = 2

x =

∣∣∣∣∣ 3 2
6 5

∣∣∣∣∣∣∣∣∣∣ 1 2
4 5

∣∣∣∣∣
= 3× 5− 2× 6

1× 5− 2× 4 = 3
−3 = −1
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The Problem of Complexity

What if n = 1000
Using the determinant rule is catastrophic

Given that the determinant ||
You would have a million number to be used!!!

Therefore
We favor the Gaussian Elimination method!!!
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Notably

We will see that
This is the algorithm that is constantly used to solve large systems of
equations.

However
The idea of elimination is deceptively simple!!!
You can master it after a few examples.
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To understand this method deeply

We need to understand
1 The Geometry of Linear Equations
2 Matrix Notation and Matrix Multiplication
3 Understand the Singular Cases
4 Number of Steps and Errors arising of the elimination
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Gaussian Elimination

Example

2x− y = 1
x+ y = 5

We can look at that system by rows or by columns
The first approach concentrates on the separate equations.

The Rows
We have equations 2x− y = 1 and x+ y = 5.
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Thus

We have
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Now as columns of the linear systems

The two separate equations are really one vector equation

x

[
2
1

]
+ y

[
−1
1

]
=
[

1
5

]
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Thus, we have

As vectors
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Now, if we move to n = 3

Three Planes

2u + v + w = 5
4u − 6v = −2
−2u + 7v + 2w = 9
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We have

The row picture
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What about column representation
Then, we have

u

 2
4
−2

+ v

 1
−6
7

+ w

 1
0
2

 =

 5
−2
9

 = b

Something Notable
Those are three-dimensional column vectors.
The vector b is identified with the point whose coordinates are 5, −2,
9.

That was the idea of Descartes
Descartes added the concept of a coordinate system to move the
Greek Classic Geometry

I Into an Algebra of Vectors
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The vector b is identified with the point whose coordinates are 5, −2,
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This allows to define

Vector addition a11
a21
a31

+

 a12
a22
a31

+

 a13
a23
a33

 =

 a11 + a12 + a13
a21 + a22 + a23
a31 + a32 + a33


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Further

Multiplication by scalars

x

 a1
a2
a3

 =

 x · a1
x · a2
x · a3


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Finally

Linear combination - combine the previous concepts

x1

 a11
a21
a31

+ x2

 a12
a22
a31

+ x3

 a13
a23
a33

 =

 x1a11 + x2a12 + x3a13
x1a21 + x2a22 + x3a23
x1a31 + x2a32 + x3a33


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Our Goal, Beyond Two or Three Dimensions

We have
With n equations in n unknowns, there are n planes in the row
picture.
There are n vectors in the column picture, plus a vector b on the right
side.
The equations ask for a linear combination of the n columns that
equals b.

Something Notable
For certain equations that will be impossible.

Here
Row picture: Intersection of planes
Column picture: Combination of columns
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Now, Imagine the following

What Happens with Three Planes in R3

And they do not intersect

For example
2u+ v + w = 5
4u+ 2v + 2w = 13

Trying to do Gaussian Elimination
It not allows to find a solution!!!
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Basically, we can go worse with three planes
We could have have two parallel planes

Furthermore
1 No intersection
2 All Parallel Planes
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For Example, No intersection
This corresponds to a singular system

u + v + w = 2
2u + 3w = 5
3u + v + 4w = 6

Here
The first two left sides add up to the third.
On the right side that fails: 2 + 5 6= 6.
Additionally 1 plus equation 2 minus equation 3 is the impossible
statement 0 = 1.

Thus
The equation are inconsistent
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Further

What about an infinity set of solutions

u + v + w = 2
2u + 3w = 5
3u + v + 4w = 7

In such case
The three planes have a whole line in common.

Thus
You have many solution not a zeroth of solution.
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Finally
The extreme case is three parallel planes
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However

For special right sides, for example b = (0, 0, 0)T

The three parallel planes move over to become the same.
I There is a whole plane of solutions.

Question
What happens to the column picture when the system is singular?
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We have an example

The System

2u+ v + w = 5
4u− 6v = −2

−2u+ 7v + 2w = 9

As Always, we want to find
u, v, w
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Applying Gaussian Elimination

First Step
Subtracting multiples of the first equation from the other equations

For Example
Subtract 2 times the first equation from the second.
Subtract −1 times the first equation from the third.

Therefore

2u+ v + w = 5
−8v − 2w = −12

8v + 3w = 14
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Pivot

We have that
The coefficient 2 is the first pivot.

Something Notable
Elimination is constantly dividing the pivot into the numbers
underneath it.

Basically, if we put everything in terms of matrices 2 1 1
0 −8 −2
0 8 3


 u

v
w

 =

 5
−12
14


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Completing the process

Subtract 1 times the second equation from the third

2u+ v + w = 5
−8v − 2w = −12

1w = 2

Know as a Triangular System
Now substituting backwards, we can obtain our solutions:

I This process is called back-substitution.

For example
At the Board...
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A nice way to look at this substitution

We get our system to the bare minimum 2 1 1 5
4 −6 0 −2
−2 7 2 9

 7→
 2 1 1 5

0 −8 −2 −12
0 8 3 14


Further  2 1 1 5

0 −8 −2 −12
0 8 3 14

 7→
 2 1 1 5

0 −8 −2 −12
0 0 1 2


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Question

Important
Under what circumstances could the process break down?

Very Simple
If a zero appears in a pivot position.

The main problem
We do not know whether a zero will appear until we try.
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We can try to cure this by exchanging rows!!!

Nonsingular - exchanging equations 2 and 3 1 1 1 −
2 2 5 −
4 6 8 −

 7→
 1 1 1 −

0 0 3 −
0 2 4 −

 7→
 1 1 1 −

0 2 4 −
0 0 3 −


Singular (incurable) 1 1 1 −

2 2 5 −
4 4 8 −

 7→
 1 1 1 −

0 0 3 −
0 0 4 −


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How many separate arithmetical operations do we need?

Look at the Left Side of the Equations
We have two types:

I We divide by the pivot to know what multiple of the pivot equation is
to be subtracted.

Therefore, we have a multiple l
The terms in the pivot equation are multiplied by l,

I Then subtracted from another equation.

If we have n operations to obtain the desired zeros of the other
columns

One to find l and the other to create the new entries.
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Therefore

We have n− 1 rows
We need n (n− 1) = n2 − n operations

This can be generalized

k 7−→ k2 − k

Then, we have for the Forward Elimination

(
12 + 22 + ... + n2)− (1 + 2 + ... + n) = n (n + 1) (2n + 1)

6 − n (n + 1)
2 = n3 − n

3
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Therefore

If n is large
The Left Side have a the following number of operations as 1

3n
3.

Now for back substitution
1 + 2 + ...+ n = n(n+1)

2

Total Number of Operations for the Back and Forward Steps
n3 − n

3 + n (n+ 1)
2
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Forward elimination also acts on the right-hand side

The Total Forward and Backward is responsible on the Right Side of
[(n− 1) + (n− 2) + ...+ 1] + [1 + 2 + ...+ n] = n2
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Thus

We start converting everything into a series of matrix multiplications

2u+ v + w = 5
−8v − 2w = −12

1w = 2

Then, we have a matrix representation!!! 1 1 1 5
2 2 5 −12
4 6 8 2


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For This, we introduce the concept of Elementary Matrices

Definition
In mathematics, an elementary matrix is a matrix which differs from
the identity matrix by one single elementary row operation.

66 / 151



Row switching

A row within the matrix can be switched with another row

Ri ←→ Rj

Example  0 1 0
1 0 0
0 0 1


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Row multiplication

Each element in a row can be multiplied by a non-zero constant

kRi −→ Ri where k 6= 0

Example  1 0 0
0 10 0
0 0 1


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Row addition

A row can be replaced by the sum of that row and a multiple of
another row

Ri + kRj −→ Ri where i 6= j

Example  1 0 0
0 1 5
0 0 1


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We have then

Example  2 1 1 5
4 −6 0 −2
−2 7 2 9


Then, we have 1

2 0 0
0 1 0
0 0 1


 2 1 1 5

4 −6 0 −2
−2 7 2 9

 =

 1 1
2

1
2

5
2

4 −6 0 −2
−2 7 2 9


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Next

Second Row minus -4 first row
 1 0 0
−4 1 0
0 0 1


 1 1

2
1
2

5
2

4 −6 0 −2
−2 7 2 9

 =

 1 1
2

1
2

5
2

0 −8 −2 −12
−2 7 2 9


Then

 1 0 0
0 1 0
2 0 1


 1 1

2
1
2

5
2

0 −8 −2 −12
−2 7 2 9

 =

 1 1
2

1
2

5
2

0 −8 −2 −12
0 8 3 14


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Therefore, we have

Now  1 0 0
0 −1

8 0
0 0 1


 1 1

2
1
2

5
2

0 −8 −2 −12
0 8 3 14

 =

 1 1
2

1
2

5
2

0 1 1
4

3
2

0 8 3 14


Thus  1 0 0

0 1 0
0 −8 1


 1 1

2
1
2

5
2

0 1 1
4

3
2

0 8 3 14

 =

 1 1
2

1
2

5
2

0 1 1
4

3
2

0 0 1 2



73 / 151



Therefore, we have

Now  1 0 0
0 −1

8 0
0 0 1


 1 1

2
1
2

5
2

0 −8 −2 −12
0 8 3 14

 =

 1 1
2

1
2

5
2

0 1 1
4

3
2

0 8 3 14


Thus  1 0 0

0 1 0
0 −8 1


 1 1

2
1
2

5
2

0 1 1
4

3
2

0 8 3 14

 =

 1 1
2

1
2

5
2

0 1 1
4

3
2

0 0 1 2



73 / 151



Outline
1 Introduction

Why and What?
A Little Bit of History

2 Matrices and Gaussian Elimination
Introduction
The Geometry of Linear Equations
Example

Column Vectors and Linear Combinations
The Singular Case
An Example of Gaussian Elimination
Fixing some problems of Singularity
The Cost Of Elimination
Convert Everything into Matrix Multiplications
Example of Using Elementary Matrices

3 Vector Space
Introduction
Classic Example, The Matrix Space Rn×m

Some Notes in Notation
Sub-spaces and Linear Combinations
Recognizing Sub-spaces
Linear Combinations

Spanned Space

4 Basis and Dimensions
Basis
Coordinates
Basis and Dimensions

5 Fundamental Spaces
Introduction
Examples Using a Specific Matrix
Fundamental Theorem of Linear Algebra
Existence of Inverses 74 / 151



Vector Space V

Definition
A vector space V over the field K is a set of objects which can be added
and multiplied by elements of K.

Where
The sum of two elements of V is again an element of V .
The product of an element of V by an element of K is an element of
V .

75 / 151



Vector Space V

Definition
A vector space V over the field K is a set of objects which can be added
and multiplied by elements of K.

Where
The sum of two elements of V is again an element of V .
The product of an element of V by an element of K is an element of
V .

75 / 151



Vector Space V

Definition
A vector space V over the field K is a set of objects which can be added
and multiplied by elements of K.

Where
The sum of two elements of V is again an element of V .
The product of an element of V by an element of K is an element of
V .

75 / 151



Vector Space V

Definition
A vector space V over the field K is a set of objects which can be added
and multiplied by elements of K.

Where
The sum of two elements of V is again an element of V .
The product of an element of V by an element of K is an element of
V .

75 / 151



Properties

We have then
1 Given elements u,v,w of V , we have (u + v) + w = u + (v + w).
2 There is an element of V , denoted by O, such that
O + u = u +O = u for all elements u of V .

3 Given an element u of V , there exists an element −u in V such that
u + (−u) = O.

4 For all elements u,v of V , we have u + v = v + u.
5 For all elements u of V , we have 1 · u = u.
6 If c is a number, then c (u + v) = cu + cv.
7 if a, b are two numbers, then (ab) v = a (bv).
8 If a, b are two numbers, then (a+ b) v = av + bv.
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Therefore, we have

We have the existence of a Zero Matrix[ 2 1 1
4 −6 0

−2 7 2

]
+

[ 0 0 0
0 0 0
0 0 0

]
=

[ 2 1 1
4 −6 0

−2 7 2

]

The existence of −A[ 2 1 1
4 −6 0

−2 7 2

]
+

[ −2 −1 −1
−4 6 −0
2 −7 −2

]
=

[ 0 0 0
0 0 0
0 0 0

]
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Commutativity in Addition

We have[ 1 0 0
4 1 0
1 0 0

]
+

[ 1 0 2
0 1 3
0 0 1

]
=

[ 1 0 2
0 1 3
0 0 1

]
+

[ 1 0 0
4 1 0
1 0 0

]

But not in the Product of Matrices in General 1 0 0
4 1 0
1 0 0

+

 1 0 2
0 1 3
0 0 1

 =

 1 0 2
0 1 3
0 0 1

+

 1 0 0
4 1 0
1 0 0


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Notation

First, u + (−v)
As u− v.

For O
We will write sometimes 0.

The elements in the field K
They can receive the name of number or scalar.
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Sub-spaces

Definition
Let V a vector space and W ⊆ V , thus W is a subspace if:

1 If v, w ∈W , then v + w ∈W .
2 If v ∈W and c ∈ K, then cv ∈W .
3 The element 0 ∈ V is also an element of W .
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Example

Let V ∈ Rd+1

W be the set of vectors in V whose last coordinate is equal to 0.

Do you remember?
The augmented data Matrix X.
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Some ways of recognizing Sub-spaces

Theorem
A non-empty subset W of V is a subspace of V if and only if for each pair
of vectors v,w ∈W and each scalar c ∈ K the vector cv + w ∈ W .
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Example

For R2

0 1 2 3

1

2

4

0
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Linear Combinations

Definition
Let V an arbitrary vector space, and let v1,v2, ...,vn ∈ V and
x1, x2, ..., xn ∈ K. Then, an expression like

x1v1 + x2v2 + ...+ xnvn (6)

is called a linear combination of v1,v2, ...,vn.
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An Important Subspace

Something Notable
Let W be the set of all linear combinations of subspace of
v1,v2, ...,vn. Then W is a subspace of V

Proof
Take a look at the white board...
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Classic Examples

Endmember Representation in Hyperspectral Images
Look at the board

Geometric Representation of addition of forces in Physics
Look at the board!!

91 / 151



Classic Examples

Endmember Representation in Hyperspectral Images
Look at the board

Geometric Representation of addition of forces in Physics
Look at the board!!

91 / 151



An Interesting Example

Let V = Rd

Let x and y ∈ V such that

x =


x1
x2
...
xd

 and y =


y1
y2
...
yd


We define the dot product or scalar product

x · y = xTy =
(
x1 x2 · · · xd

)

y1
y2
...
yd

 =
d∑
i=1

xiyi
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Alternate Defintion

We can also define the dot product as

x · y =

√√√√ d∑
i=1

x2
i

√√√√ d∑
i=1

y2
i cos Θ
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We have the following properties for this dot product

SP 1
We have x · y = y · x

SP 2
If x,y and z ∈ V

x · (y + z) = x · y + x · z = (y + z) · x

SP 3
if k ∈ K

(kx) · y = k (x · y)
x · (ky) = k (x · y)
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Properties and Definitions

Theorem
Let V be a vector space over the field K. The intersection of any
collection of sub-spaces of V is a subspace of V .

Definition
Let S be a set of vectors in a vector space V .
The sub-space spanned by S is defined as the intersection W of all
sub-spaces of V which contains S.
When S is a finite set of vectors, S = {v1,v2, . . . ,vn}, we shall
simply call W the sub-space spanned by the vectors v1,v2, . . . ,vn.
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We get the following Theorem

Theorem
The subspace spanned by S 6= ∅ is the set of all linear combinations of
vectors in S.
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Linear Independence

Definition
Let V be a vector space over a field K, and let v1,v2, ...,vn ∈ V . We
have that v1,v2, ...,vn are linearly dependent over K if there are elements
a1, a2, ..., an ∈ K not all equal to 0 such that

a1v1 + a2v2 + ...+ anvn = O

Thus
Therefore, if there are not such numbers, then we say that v1,v2, ...,vn
are linearly independent.

We have the following
Example!!!
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Basis

Definition
If elements v1,v2, ...,vn generate V and in addition are linearly
independent, then {v1,v2, ...,vn} is called a basis of V . In other words
the elements v1,v2, ...,vn form a basis of V .

Examples
The Classic Ones!!!
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Coordinates

Theorem
Let V be a vector space. Let v1,v2, ...,vn be linearly independent elements
of V. Let x1, . . . , xn and y1, . . . , yn be numbers. Suppose that we have

x1v1 + x2v2 + · · ·+ xnvn = y1v1 + y2v2 + · · ·+ ynvn (7)

Then, xi = yi for all i = 1, . . . , n.

Proof
At the Board...
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Coordinates

Let V be a vector space, and let {v1,v2, ...,vn} be a basis of V
For all v ∈ V , v = x1v1 + x2v2 + · · ·+ xnvn.

Thus, this n-tuple is uniquely determined by v

We will call (x1, x2, . . . , xn) as the coordinates of v with respect to the
basis.

The n−tuple X = (x1, x2, . . . , xn)
It is the coordinate vector of v with respect to the basis {v1,v2, ...,vn} .
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Properties of a Basis

Theorem - (Limit in the size of the basis)
Let V be a vector space over a field K with a basis {v1,v2, ...,vm}. Let
w1,w2, ...,wn be elements of V , and assume that n > m. Then
w1,w2, ...,wn are linearly dependent.

Examples
We have the following...
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Some Basic Definitions

We will define the dimension of a vector space V over K
As the number of elements in the basis.

Denoted by dimK V , or simply dimV

Therefore
A vector space with a basis consisting of a finite number of elements, or
the zero vector space, is called a finite dimensional.

Now
Is this number unique?
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Maximal Set of Linearly Independent Elements

Theorem
Let V be a vector space, and {v1,v2, ...,vn} a maximal set of linearly
independent elements of V . Then, {v1,v2, ...,vn} is a basis of V .

Theorem
Let V be a vector space of dimension n, and let v1,v2, ...,vn be linearly
independent elements of V . Then, v1,v2, ...,vn constitutes a basis of V .
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Equality between Basis

Corollary
Let V be a vector space and let W be a subspace. If dimW = dimV
then V = W .

Corollary
Let V be a vector space of dimension n. Let r be a positive integer with
r < n, and let v1,v2, ...,vr be linearly independent elements of V. Then
one can find elements vr+1,vr+2, ...,vn such that {v1,v2, ...,vn} is a
basis of V .
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Finally

Theorem
Let V be a vector space having a basis consisting of n elements. Let W be
a subspace which does not consist of O alone. Then W has a basis, and
the dimension of W is ≤ n.
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We have

Given a Matrix A of m× n
And it has been reduced to a a Echelon or Reduced Version...

It is possible to find the subspaces associated A
Here, we introduce the concept of rank

Definition
the rank of a matrix A is the dimension of the vector space generated
(or spanned) by its columns.
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Here
We have

When the rank is as large as possible, r = n or r = m or r = m = n,
the matrix has a left-inverse B or a right-inverse C or a two-sided
A−1.

Then, we have the following subspaces
1 The column space of A is denoted by C(A) is a subspace of Rm.

I Its dimension is the rank r.
2 The null space of A is denoted by N(A) is a subspace of Rn.

I It contains all vectors y such that Ay = 0.
I Its dimension is n− r.

3 The row space of A is the column space of AT (n×m), a subspace
of Rn.

I It is C
(
AT
)
, and it is spanned by the rows of A.

I Its dimension is also r.
4 The left null space of A is the nullspace of AT and subspace of Rm.

1 It contains all vectors y such that AT y = 0, and it is written N
(
AT
)
.
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Now

If A is an m× n matrix
We have a host spaces that contains these fundamental subspaces.

First
The nullspace N(A) and row space C

(
AT
)
are subspaces of Rn.

Second
The left nullspace N

(
AT
)
and column space C (A) are subspaces of

Rm.
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Example

If we have

A = U = R =
[

1 0 0
0 0 0

]

Here, the Column space is the line through

x1 =
(

1
0

)

The Row space is the line through

x2 =
(

1 0 0
)T
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Here a Curious Situation

We have that N(A) contains 0
1
0

 and

 0
0
1



What about N
(
AT
)
?

Any Idea?
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We have

Our Basic Matrix

A =

 1 3 3 2
2 6 9 7
−1 −3 3 4


Therefore, we have the Reduced Matrix After Gaussian Elimination

U =

 1 3 3 2
0 0 3 3
0 0 0 0


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We have

Something Notable
For an echelon matrix like U , the row space is clear.

It contains all combinations of the rows
However, the third Row does not adds anything!!!

Thus
A similar rule applies to every echelon matrix U , with r pivots and r
nonzero rows.
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Affirmation

Something Notable
The row space of A has the same dimension r as the row space of U ,
and it has the same bases.

Why?
The reason is that each elementary operation leaves the row space
unchanged.

Further
The rows in U are combinations of the original rows in A.

I The row space of U contains nothing new.
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Furthermore

Something Notable
Every step can be reversed, nothing is lost!!!

I The rows of A can be recovered from U .

Finally
It is true that A and U have different rows, but the combinations of
the rows are identical!!!

I SAME SPACE!!!
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We have

Something Notable
Elimination simplifies a system of linear equations without changing
the solutions.

After all

Ax = 0 −→ Ux = 0

Which is a reversible process...

Therefore
The null space of A is the same as the null space of U .
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Given

Only r of the equations Ax = 0 are independent.
We can see that...

Thus, choosing the n− r “special solutions” to Ax = 0
The null space N(A) has dimension n− r.

The “special solutions” are a basis
Each free variable is given the value 1, while the other free variables
are 0.
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Thus, we have

Then Ax = 0 or Ux = 0
Using Back Substitution we can obtain the variables

U =

 1 3 3 2
0 0 3 3
0 0 0 0


This is exactly the way we have been solving Ux = 0

The basic example above has pivots in columns 1 and 3.

Remember

U =

 1 3 3 2
0 0 3 3
0 0 0 0


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Then

Therefore its free variables are the second and fourth

Special Solutions x1 =


−3
1←

0
0←

 , x2 =


1

0←
−1
1←


Any combinationc1x1 + c2x2

It has c1 as its second component, and c2 as its fourth component.
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Therefore

The only way to have c1x1 + c2x2 = 0
It can only be when c1 = c2 = 0!!!

They are basis for the null space because

 1 3 3 2
0 0 3 3
0 0 0 0



−3
1
0
0

 =

 0
0
0

 ,
 1 3 3 2

0 0 3 3
0 0 0 0




1
0
−1
1

 =

 0
0
0

 ,
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The only way to have c1x1 + c2x2 = 0
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Additionally

The null space is also called the kernel of A
Its dimension n− r is the nullity.
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Now, we have

The column space is sometimes called the range
After all you can define linear functions using matrices

fA : Rn → Rm, with fA (x) = Ax

Then
1 Its domain consists of all x in Rn.
2 Its range is all possible vectors fA (x) = Ax.

Our problem is to find bases for the column spaces of U and A
Those spaces are different, but their dimensions are the same
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Example

Remember

U =

 1 3 3 2
0 0 3 3
0 0 0 0

 , A =

 1 3 3 2
2 6 9 7
−1 −3 3 4



The first and third columns of U are a basis for its column space
The first and third columns of U are a basis for its column space.
Every other column is a combination of those two!!!

The pivot columns of A are a basis for its column space
The second column is three times the first, just as in U .
The fourth column equals (column 3) − (column 1).
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Further

The same null space is telling us those dependencies
The reason is this

Ax = 0⇔ Ux = 0

Every linear dependence Ax = 0 among the columns of A
It is matched by a dependence Ux = 0 among the columns of U ,
with exactly the same coefficients.

Theorem
If a set of columns of A is independent, then so are the corresponding
columns of U , and vice versa.
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Now

To find a basis for the column space C(A), we use what is already
done for U

The r columns containing pivots are a basis for the column space of
U .

Something Notable
We will pick those same r columns in A.

Observation
The dimension of the column space C(A) equals the rank r, which
also equals the dimension of the row space.
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Finally

Theorem
The number of independent columns equals the number of
independent rows.

Something Notable
A basis for C(A) is formed by the r columns of A that correspond, in
U , to the columns containing pivots.

It also says something about square matrices
If the rows of a square matrix are linearly independent, then so are
the columns (and vice versa).
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How?

both the row and column spaces of U have dimension r = 3

U =


d1 ∗ ∗ ∗ ∗ ∗
0 0 0 d2 ∗ ∗
0 0 0 0 0 d3
0 0 0 0 0 0


We claim that U also has three independent columns, and no more

We notice, the columns have only three nonzero components.

If we can show that the pivot columns are linearly independent
They must be a basis!!!
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Then

Suppose, we have

c1


d1
0
0
0

+ c2


∗
d2
0
0

+ c3


∗
∗
d3
0

 =


0
0
0
0


Back Substitution
Look at the Board...
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Now

Since
Ax = 0 if and only if Ux = 0.

The first, fourth, and sixth columns of A
They are a basis for C(A).
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We can call this as

The null space of AT

If A is an m× n matrix =⇒ AT is a n×m matrix.

Thus, its null space is a subspace of Rm

We have:
1 yTA = 0
2 ATy = 0

Example

yTA = [y1, · · · , ym]A = [0 · · · 0]
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What is the dimension of the Null Space N
(
AT

)

For any matrix
The number of pivot variables plus the number of free variables
must match the total number of columns.

In other words
dimension of C(A)+ dimension of N(A)= number of columns

This law applies to AT which has m columns, then

r+ dimension
(
N
(
AT
))

= m
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Thus

The left nullspace N
(
AT
)

It has dimension m− r

137 / 151



Outline
1 Introduction

Why and What?
A Little Bit of History

2 Matrices and Gaussian Elimination
Introduction
The Geometry of Linear Equations
Example

Column Vectors and Linear Combinations
The Singular Case
An Example of Gaussian Elimination
Fixing some problems of Singularity
The Cost Of Elimination
Convert Everything into Matrix Multiplications
Example of Using Elementary Matrices

3 Vector Space
Introduction
Classic Example, The Matrix Space Rn×m

Some Notes in Notation
Sub-spaces and Linear Combinations
Recognizing Sub-spaces
Linear Combinations

Spanned Space

4 Basis and Dimensions
Basis
Coordinates
Basis and Dimensions

5 Fundamental Spaces
Introduction
Examples Using a Specific Matrix
Fundamental Theorem of Linear Algebra
Existence of Inverses 138 / 151



Fundamental Theorem of Linear Algebra

Given A
1 C (A) = column space of A; dimension r
2 N (A) = null space space of A; dimension n− r
3 C

(
AT
)

= row space of A; dimension r

4 N
(
AT
)

= column space of A; dimension r
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We have the following situation

We know that if A has a left-inverse (BA = I) and a right-inverse
(AC = I)

B = BI = B (AC) = (BA)C = C

Now, from the rank of a matrix
We can decide if the matrix has these inverses.

Properties
An inverse exists only when the rank is as large as possible.
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First

The rank always satisfies r ≤ m and also r ≤ n

Thus, an m by n matrix cannot have more than m independent rows
or n independent columns.

There is not space for more than m pivots, or more than n
1 When r = m there is a right-inverse, and Ax = b always has a

solution.
2 When r = n there is a left-inverse, and the solution (if it exists) is

unique.

Only a square matrix
It can have both r = m and r = n, and therefore only a square
matrix can achieve both existence and uniqueness.
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EXISTENCE

Full row rank r = m

Then, Ax = b has at least one solution x for every b if and only if the
columns span Rm

Therefore
Then A has a right-inverse C such that AC = Im(m×m).

Therefore
This is possible only if m ≤ n.
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UNIQUENESS

Full column rank r = n

Ax = b has at most one solution x for every b if and only if the
columns are linearly independent.

Then A has an n×m left-inverse B

BA = In

Properties
Then A has an n×m left-inverse B such that BA = In only if
m ≥ n.
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Existence Case

Once possible solution is x = Cb

Then, Ax = ACb = b

Something Notable
But there will be other solutions if there are other right-inverses.

Finally
The number of solutions when the columns span Rm is 1 to ∞.
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In the uniqueness case

If there is a solution to Ax = b

It has to be x = BAx = Bb

But there may be no solution
The number of solutions is 0 or 1.

There are simple formulas for the best left and right inverses

B =
(
ATA

)−1
A and C = AT

(
AAT

)−1
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Therefore

Certainly BA = I and AC = I

Look at the Board

Something Notable
What is not so certain is that ATA and AAT are actually invertible.
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Finally

Something Notable
A rectangular matrix cannot have both existence and uniqueness.

Why?
If m is different from n, we cannot have r = m and r = n.
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A square matrix is the opposite

Something Notable
If m = n, we cannot have one property without the other.

Furthermore
A square matrix has a left-inverse if and only if it has a right-inverse.

Another Condition
The condition for invertibility is full rank: r = m = n.
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Thus

Each of these conditions is a necessary and sufficient test
1 The columns span Rn, so Ax = b has at least one solution for every b.
2 The columns are independent, so Ax = 0 has only the solution x = 0.
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We have a longer list

The following conditions are equivalent
1 The rows of A span Rn.
2 The rows are linearly independent.
3 Elimination can be completed:PA = LDU , with all n pivots.
4 The determinant of A is not zero.
5 Zero is not an eigenvalue of A.
6 ATA is positive definite.
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