Introduction to Artificial Intelligence

Andres Mendez-Vazquez

December 25, 2018

イロン イロン イヨン イヨン 三日

1/60

Outline

Strong AI vs. Weak AI

Definition

Problems Will Robinson...

Searle's Chinese Room

The Long Dream

- Modern Times
- The Fragmentation Years
- The Resurgence of AI

< ロ > < 回 > < 回 > < 回 > < 回 >

Outline

- Testing such approach, The Turing Test
- Implications of the Turing Test
- Extensions
- Some Issues About the Turing Test
- Other Approaches
 - Cognitive Approach
 - Use of Logic

2 Strong AI vs. Weak AI

- Definition
- Problems Will Robinson...
- Searle's Chinese Room

B) History of A

- The Long Dream
- Modern Times
- The Fragmentation Years
- The Resurgence of AI

< ロ > < 回 > < 回 > < 回 > < 回 >

A History of Ideas [1]

Any quest on human history begins with a dream

• After all People have long imagined machines with human abilities.

Human-like machines are described in many stories

A History of Ideas [1]

Any quest on human history begins with a dream

• After all People have long imagined machines with human abilities.

Human-like machines are described in many stories

Cinvestav

<ロト < 団ト < 巨ト < 巨ト < 巨ト 三 の Q () 4 / 60

It was the Greek philosopher Aristotle

- Who first tried to analyze and codify the process:
 - ► For this, he invented the syllogism

It was the Greek philosopher Aristotle

- Who first tried to analyze and codify the process:
 - For this, he invented the syllogism

For Example

All humans are mortal. (stated)

All Greeks are mortal. (result)

イロト イヨト イヨト

It was the Greek philosopher Aristotle

- Who first tried to analyze and codify the process:
 - For this, he invented the syllogism

For Example

- All humans are mortal. (stated)
- 2 All Greeks are humans. (stated)

It was the Greek philosopher Aristotle

- Who first tried to analyze and codify the process:
 - For this, he invented the syllogism

For Example

- All humans are mortal. (stated)
- All Greeks are humans. (stated)
- 3 All Greeks are mortal. (result)

イロト イヨト イヨト イヨト

This open the door...

To automatize thought

- All B's are A. (stated)
- All C's are B's. (stated)
- 3 All C's are A. (result)

Talking about Expert Systems

Ramon Llull (circa 1235–1316)

• A Catalan mystic and poet

Produced a set of paper discs called the Ars Magna

 A debating tool for winning Muslims to the Christian faith through logic and reason.

Basically

- An Early Expert System for the Apologetics.
 - Remember two religious Empires (Catholics and Muslims) were in open confrontation....

Talking about Expert Systems

Ramon Llull (circa 1235–1316)

A Catalan mystic and poet

Produced a set of paper discs called the Ars Magna

• A debating tool for winning Muslims to the Christian faith through logic and reason.

Basically

• An Early Expert System for the Apologetics

Remember two religious Empires (Catholics and Muslims) were in open confrontation....

Talking about Expert Systems

Ramon Llull (circa 1235–1316)

A Catalan mystic and poet

Produced a set of paper discs called the Ars Magna

• A debating tool for winning Muslims to the Christian faith through logic and reason.

Basically

- An Early Expert System for the Apologetics
 - Remember two religious Empires (Catholics and Muslims) were in open confrontation....

Gottfried Wilhelm Leibniz (1646–1716)

- He wanted to mechanize reasoning
 - "It is unworthy of excellent men to lose hours like slaves in the labor of calculation which could safely be regulated to anyone else if machines were used"

Leibniz conceived

 He attempted to design a language in which all human knowledge could be formulated

Such clanguage be operated in the famous

• Calculus Ratiocinator!!!

< ロ > < 同 > < 回 > < 回 >

Gottfried Wilhelm Leibniz (1646–1716)

- He wanted to mechanize reasoning
 - "It is unworthy of excellent men to lose hours like slaves in the labor of calculation which could safely be regulated to anyone else if machines were used"

Leibniz conceived

• He attempted to design a language in which all human knowledge could be formulated

Such clanguage be operated in the famous

Calculus Ratiocinator!!!

イロト イヨト イヨト

Gottfried Wilhelm Leibniz (1646–1716)

- He wanted to mechanize reasoning
 - "It is unworthy of excellent men to lose hours like slaves in the labor of calculation which could safely be regulated to anyone else if machines were used"

Leibniz conceived

 He attempted to design a language in which all human knowledge could be formulated

Such clanguage be operated in the famous

• Calculus Ratiocinator!!!

イロト イヨト イヨト

Thus, the quest for Artificial Intelligence

It has been always present in the last 2500 years

Question, What is Artificial Intelligence?

イロト イボト イヨト イヨト

Outline

Thus, What is Artificial Intelligence?

- Testing such approach, The Turing Test
- Implications of the Turing Test
- Extensions
- Some Issues About the Turing Test
- Other Approaches
 - Cognitive Approach
 - Use of Logic

2 Strong AI vs. Weak AI

- Definition
- Problems Will Robinson...
- Searle's Chinese Room

B) History of A

- The Long Dream
- Modern Times
- The Fragmentation Years
- The Resurgence of AI

< ロ > < 回 > < 回 > < 回 > < 回 >

Question

What is Intelligence?

• Anybody has an idea?

Let me tell you how controversial is the term [2]

 From "Mainstream Science on Intelligence" (1994), an op-ed statement in the Wall Street Journal signed by fifty-two researchers (out of 131 total invited to sign)

They gave

 "A very general mental capability that, among other things, involves the ability to reason, plan, solve problems, think abstractly, comprehend complex ideas, learn quickly and learn from experience. It is not merely book learning, a narrow academic skill, or test-taking smarts. Rather, it reflects a broader and deeper capability for comprehending our surroundings-"catching on," "making sense" of things, or "figuring out" what to do."

Question

What is Intelligence?

• Anybody has an idea?

Let me tell you how controversial is the term [2]

• From "Mainstream Science on Intelligence" (1994), an op-ed statement in the Wall Street Journal signed by fifty-two researchers (out of 131 total invited to sign)

They gave

"A very general mental capability that, among other things, involves the ability to reason, plan, solve problems, think abstractly, comprehend complex ideas, learn quickly and learn from experience. It is not merely book learning, a narrow academic skill, or test-taking smarts. Rather, it reflects a broader and deeper capability for comprehending our surroundings-"catching on," "making sense" of things, or "figuring out" what to do."

Question

What is Intelligence?

Anybody has an idea?

Let me tell you how controversial is the term [2]

• From "Mainstream Science on Intelligence" (1994), an op-ed statement in the Wall Street Journal signed by fifty-two researchers (out of 131 total invited to sign)

They gave

 "A very general mental capability that, among other things, involves the ability to reason, plan, solve problems, think abstractly, comprehend complex ideas, learn quickly and learn from experience. It is not merely book learning, a narrow academic skill, or test-taking smarts. Rather, it reflects a broader and deeper capability for comprehending our surroundings-"catching on," "making sense" of things, or "figuring out" what to do."

Look at this...

Researcher	Quotation	
Alfred	Judgment, otherwise called "good sense", "practical sense", "initiative",	
Binet	the faculty of adapting one's self to circumstances auto-critique.	
Lloyd	the resultant of the process of acquiring, storing in memory, retrieving,	
Humphreys	combining, comparing, and using in new contexts information	
	and conceptual skills"	
Alexander	Intelligence is a force, F , that acts so as to maximize future freedom	
Wissner-Gross	of action. It acts to maximize future freedom of action,	
	or keep options open, with some strength T , with the diversity of possible	
	accessible futures, S , up to some future time horizon, t .	
	In short, intelligence doesn't like to get trapped.	
	$F = T\nabla S_t$	

We have a PROBLEM!!!

Did you notice the following?

- There is not a single viable Engineering based definition of Intelligence...
 - ► 00PSSS!!!

ヘロト 人間ト 人目下 人目下

Something Notable

• At MIT's "Brains, Minds and Machines" symposium, 2012

(日) (日) (日) (日) (日)

Something Notable

- At MIT's "Brains, Minds and Machines" symposium, 2012
 - Chomsky contends that many AI theorists have gotten bogged down with such things as statistical models and fMRI scans.

< ロ > < 同 > < 回 > < 回 >

Something Notable

- At MIT's "Brains, Minds and Machines" symposium, 2012
 - Chomsky contends that many AI theorists have gotten bogged down with such things as statistical models and fMRI scans.

He told them

• Al developers and neuroscientists need to sit down and describe the inputs and outputs of the problems that they are studying.

< ロ > < 同 > < 回 > < 回)

Something Notable

- At MIT's "Brains, Minds and Machines" symposium, 2012
 - Chomsky contends that many AI theorists have gotten bogged down with such things as statistical models and fMRI scans.

He told them

- Al developers and neuroscientists need to sit down and describe the inputs and outputs of the problems that they are studying.
 - Something that they do not actually do.... OOPSSS!!!

We have harsher words

Sydney Brenner

• Geneticist and Nobel Prize

He went to say that

• He was equally skeptical about new system approaches to understanding the brain.

He went to say that

• The new AI and neuroscientist approach is some "form of insanity

イロト イヨト イヨト イヨト

We have harsher words

Sydney Brenner

Geneticist and Nobel Prize

He went to say that

• He was equally skeptical about new system approaches to understanding the brain.

He went to say that

The new AI and neuroscientist approach is some "form of insanity"

< ロ > < 同 > < 回 > < 回 >

We have harsher words

Sydney Brenner

Geneticist and Nobel Prize

He went to say that

• He was equally skeptical about new system approaches to understanding the brain.

He went to say that

• The new AI and neuroscientist approach is some "form of insanity"

< ロ > < 回 > < 回 > < 回 > < 回 >

An unlikely pair

- System Biology a computational and mathematical modeling of complex biological systems
 - Artificial Intelligence attempts for "intelligence" in machines.

An unlikely pair

- System Biology a computational and mathematical modeling of complex biological systems
- Artificial Intelligence attempts for "intelligence" in machines

 Both face the same fundamental task of reverse-engineering a highly complex system whose inner workings are largely a mystery.

An unlikely pair

- System Biology a computational and mathematical modeling of complex biological systems
- Artificial Intelligence attempts for "intelligence" in machines

Problem

• Both face the same fundamental task of reverse-engineering a highly complex system whose inner workings are largely a mystery.

Although ever-improving technologies yield massive data related to the system!!!

Only a fraction of it is relevant!!! Question Which one?

< ロ > < 同 > < 回 > < 回 >

An unlikely pair

- System Biology a computational and mathematical modeling of complex biological systems
- Artificial Intelligence attempts for "intelligence" in machines

Problem

• Both face the same fundamental task of reverse-engineering a highly complex system whose inner workings are largely a mystery.

Why?

 Although ever-improving technologies yield massive data related to the system!!!

16 / 60

Only a fraction of it is relevant!!! Question Which one?

An unlikely pair

- System Biology a computational and mathematical modeling of complex biological systems
- Artificial Intelligence attempts for "intelligence" in machines

Problem

• Both face the same fundamental task of reverse-engineering a highly complex system whose inner workings are largely a mystery.

Why?

• Although ever-improving technologies yield massive data related to the system!!!

イロン イロン イヨン イヨン

16 / 60

Only a fraction of it is relevant!!! Question Which one?

This is good but....

The Controversy

It will keep raging for the foreseeable future !!!

There is the following classification by Norvig et al. "A Modern Introduction to AI" [3]

< ロ > < 回 > < 回 > < 回 > < 回 >

This is good but....

The Controversy

It will keep raging for the foreseeable future!!!

There is the following classification by Norvig et al. "A Modern Introduction to AI" [3]

Systems that think like humans	Systems that think rationally
Systems that act like humans	Systems that act rationally

< ロ > < 回 > < 回 > < 回 > < 回 >

I propose something different

Thus, I propose a new hierarchy [4]

Mimicking how humans	Mimicking how solving problems	
solve problems	rational works	
Basically Mimicking how to Solve Problems		

↓ **"Imitation is the sincerest form of flattery"** Oscar Wilde

Systems that look acting as humans	Systems that look acting rationally
Resulting of mimicking how	Resulting of mimicking how
humans act	how humans are rational

3

ヘロト ヘロト ヘヨト ヘヨト

Outline

2 Strong AI vs. Weak AI

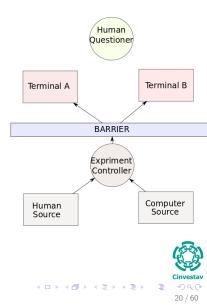
Definition

Problems Will Robinson...

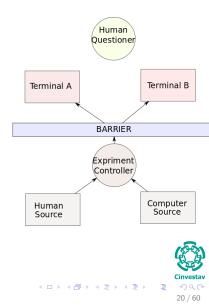
Searle's Chinese Room

B History of A

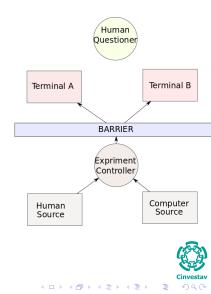
The Long Dream


- Modern Times
- The Fragmentation Years
- The Resurgence of AI

< ロ > < 回 > < 回 > < 回 > < 回 >


The Turing Test

- You have...
 - A human judge engages in a natural language conversation with one human and one machine, each of which tries to appear human.
 - All participants are placed in isolated locations.
 - If the judge cannot reliably tell the machine from the human, the machine is said to have passed the test.


The Turing Test

- You have...
 - A human judge engages in a natural language conversation with one human and one machine, each of which tries to appear human.
 - All participants are placed in isolated locations.
 - If the judge cannot reliably tell the machine from the human, the machine is said to have passed the test.

The Turing Test

- You have...
 - A human judge engages in a natural language conversation with one human and one machine, each of which tries to appear human.
 - All participants are placed in isolated locations.
 - If the judge cannot reliably tell the machine from the human, the machine is said to have passed the test.

20 / 60

Outline

2 Strong AI vs. Weak AI

Definition

Problems Will Robinson...

Searle's Chinese Room

B History of A

The Long Dream

- Modern Times
- The Fragmentation Years
- The Resurgence of AI

< ロ > < 回 > < 回 > < 回 > < 回 >

Natural Language Processing

• The machine needs to understand what you are saying.

Knowledge representation

A precise talk needs a good knowledge representation of the subject.

Automated Reasoning

Without logic who cares what are you saying

Machine Learning

• Learn to adapt depending on the data.

< ロ > < 同 > < 回 > < 回 >

Natural Language Processing

• The machine needs to understand what you are saying.

Knowledge representation

• A precise talk needs a good knowledge representation of the subject.

Automated Reasoning

Without logic who cares what are you saying

Machine Learning

Learn to adapt depending on the data.

< ロ > < 同 > < 回 > < 回 >

Natural Language Processing

• The machine needs to understand what you are saying.

Knowledge representation

• A precise talk needs a good knowledge representation of the subject.

Automated Reasoning

Without logic who cares what are you saying

Machine Learning

Learn to adapt depending on the data.

Natural Language Processing

• The machine needs to understand what you are saying.

Knowledge representation

• A precise talk needs a good knowledge representation of the subject.

Automated Reasoning

Without logic who cares what are you saying

Machine Learning

• Learn to adapt depending on the data.

イロン イロン イヨン イヨン

Outline

The Grand History of Artificial Intelligence...

- What is Artificial Intelligence?
- Thus, What is Artificial Intelligence?
- Testing such approach, The Turing Test
- Implications of the Turing Test

Extensions

- Some Issues About the Turing Test
- Other Approaches
 - Cognitive Approach
 - Use of Logic

2 Strong Al vs. Weak Al

- Definition
- Problems Will Robinson...
- Searle's Chinese Room

B) History of A

- The Long Dream
- Modern Times
- The Fragmentation Years
- The Resurgence of AI

< ロ > < 回 > < 回 > < 回 > < 回 >

Total Turing Test's Implication

Total Turing Test

• It uses a video signal so that the interrogator can test the subject's perceptual abilities.

Computer Vision

• It is used to perceive objects.

Robotics

A way to manipulate objects and to move in the environment

Total Turing Test's Implication

Total Turing Test

 It uses a video signal so that the interrogator can test the subject's perceptual abilities.

Computer Vision

• It is used to perceive objects.

Robotics

A way to manipulate objects and to move in the environment

< ロ > < 同 > < 回 > < 回 >

Total Turing Test's Implication

Total Turing Test

 It uses a video signal so that the interrogator can test the subject's perceptual abilities.

Computer Vision

It is used to perceive objects.

Robotics

A way to manipulate objects and to move in the environment

イロト イヨト イヨト

Outline

The Grand History of Artificial Intelligence...

- What is Artificial Intelligence?
- Thus, What is Artificial Intelligence?
- Testing such approach, The Turing Test
- Implications of the Turing Test
- Extensions

Some Issues About the Turing Test

- Other Approaches
 - Cognitive Approach
 - Use of Logic

2 Strong AI vs. Weak AI

- Definition
- Problems Will Robinson...
- Searle's Chinese Room

B History of A

- The Long Dream
- Modern Times
- The Fragmentation Years
- The Resurgence of AI

< ロ > < 回 > < 回 > < 回 > < 回 >

Is the Turing Test Relevant?

Some researchers have pointed out that the Turing test is not enough to talk about intelligent machines.

 In the most extreme John Searle, professor of philosophy at UC Berkeley published "The Chinese Room" paper.

He claimed that Strong AI is not even possible!!!

< ロ > < 同 > < 回 > < 回 >

Is the Turing Test Relevant?

Some researchers have pointed out that the Turing test is not enough to talk about intelligent machines.

- In the most extreme John Searle, professor of philosophy at UC Berkeley published "The Chinese Room" paper.
- He claimed that Strong AI is not even possible!!!

< ロ > < 同 > < 回 > < 回 >

Recently

Eugene Goostman

• The computer program designed by a team of Russian and Ukrainian programmers.

Against 30 Judges

• It was able to fool them 33% of the time

However

• Graeme Hirst (University of Toronto) et al. dismissed the test because the Turing Test requires 50%.

イロト イヨト イヨト イヨト

Recently

Eugene Goostman

• The computer program designed by a team of Russian and Ukrainian programmers.

Against 30 Judges

• It was able to fool them 33% of the time

However

 Graeme Hirst (University of Toronto) et al. dismissed the test because the Turing Test requires 50%.

イロト イボト イヨト イヨト

Recently

Eugene Goostman

• The computer program designed by a team of Russian and Ukrainian programmers.

Against 30 Judges

• It was able to fool them 33% of the time

However

• Graeme Hirst (University of Toronto) et al. dismissed the test because the Turing Test requires 50%.

イロト イヨト イヨト イヨト

Outline

The Grand History of Artificial Intelligence...

- What is Artificial Intelligence?
- Thus, What is Artificial Intelligence?
- Testing such approach, The Turing Test
- Implications of the Turing Test
- Extensions
- Some Issues About the Turing Test

Other Approaches

- Cognitive Approach
- Use of Logic

2 Strong Al vs. Weak Al

- Definition
- Problems Will Robinson...
- Searle's Chinese Room

B) History of A

- The Long Dream
- Modern Times
- The Fragmentation Years
- The Resurgence of AI

< ロ > < 回 > < 回 > < 回 > < 回 >

Outline

2 Strong Al vs. Weak Al

Definition

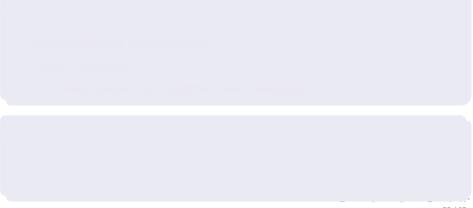
Problems Will Robinson...

Searle's Chinese Room

3 History of A

The Long Dream

- Modern Times
- The Fragmentation Years
- The Resurgence of AI



< ロ > < 回 > < 回 > < 回 > < 回 >

Some Researchers

• They think that we should understand the human mind.

Question: Understanding how the human mind solve problems and react to the environment?

Some Researchers

- They think that we should understand the human mind.
 - Question: Understanding how the human mind solve problems and react to the environment?

hree ways of doing this

- Thought's Inspection
- Psychological experiments
- Brain Imaging
 - ► Also known as Cognitive Brain Imaging...

Some Researchers

- They think that we should understand the human mind.
 - Question: Understanding how the human mind solve problems and react to the environment?

Three ways of doing this

- Thought's Inspection
- Psychological experiments
- Brain Imaging
 - Also known as Cognitive Brain Imaging...

Example

Some Researchers

- They think that we should understand the human mind.
 - Question: Understanding how the human mind solve problems and react to the environment?

Three ways of doing this

- Thought's Inspection
- Psychological experiments

Also known as Cognitive Brain Imagin

Example

Some Researchers

- They think that we should understand the human mind.
 - Question: Understanding how the human mind solve problems and react to the environment?

Three ways of doing this

- Thought's Inspection
- Psychological experiments
- Brain Imaging

nown as Cognitive Brain Imaging...

Example

Some Researchers

- They think that we should understand the human mind.
 - Question: Understanding how the human mind solve problems and react to the environment?

Three ways of doing this

- Thought's Inspection
- Psychological experiments
- Brain Imaging
 - Also known as Cognitive Brain Imaging...

Some Researchers

- They think that we should understand the human mind.
 - Question: Understanding how the human mind solve problems and react to the environment?

Three ways of doing this

- Thought's Inspection
- Psychological experiments
- Brain Imaging
 - Also known as Cognitive Brain Imaging...

Example

Thought's Inspection

• To do this is quite difficult because you require snapshots of the thought process...

Thought's Inspection

• To do this is quite difficult because you require snapshots of the thought process...

Psychological experiments

• Statistics are quite iffy!!!

Thought's Inspection

• To do this is quite difficult because you require snapshots of the thought process...

Psychological experiments

- Statistics are quite iffy!!!
- Reproducibility Problems!!!

Cognitive Brain Imaging

- Resolution problem
 - PET and MRI work at the range of mm, but you have in a cubic mm 1,000,000 neurons!!!
- Difference Between Individuals
- Reproducibility and Replication Problems

Thought's Inspection

• To do this is quite difficult because you require snapshots of the thought process...

Psychological experiments

- Statistics are quite iffy!!!
- Reproducibility Problems!!!
- Bias Problems!!!

Cognitive Brain Imaging

Resolution problem

- PET and MRI work at the range of mm, but you have in a cubic mm 1,000,000 neurons!!!
- Difference Between Individuals
- Reproducibility and Replication Problems

Thought's Inspection

• To do this is quite difficult because you require snapshots of the thought process...

Psychological experiments

- Statistics are quite iffy!!!
- Reproducibility Problems!!!
- Bias Problems!!!

Cognitive Brain Imaging

- Resolution problem
 - PET and MRI work at the range of mm, but you have in a cubic mm 1,000,000 neurons!!!
- Difference Between Individuals
- Reproducibility and Replication Problems

Thought's Inspection

• To do this is quite difficult because you require snapshots of the thought process...

Psychological experiments

- Statistics are quite iffy!!!
- Reproducibility Problems!!!
- Bias Problems!!!

Cognitive Brain Imaging

- Resolution problem
 - ► PET and MRI work at the range of mm, but you have in a cubic mm 1,000,000 neurons!!!
- Difference Between Individuals
- Reproducibility and Replication Problems

Drawbacks of the Cognitive Approach

Thought's Inspection

• To do this is quite difficult because you require snapshots of the thought process...

Psychological experiments

- Statistics are quite iffy!!!
- Reproducibility Problems!!!
- Bias Problems!!!

Cognitive Brain Imaging

- Resolution problem
 - ► PET and MRI work at the range of mm, but you have in a cubic mm 1,000,000 neurons!!!
- Difference Between Individuals

Reproducibility and Replication Problems

Drawbacks of the Cognitive Approach

Thought's Inspection

• To do this is quite difficult because you require snapshots of the thought process...

Psychological experiments

- Statistics are quite iffy!!!
- Reproducibility Problems!!!
- Bias Problems!!!

Cognitive Brain Imaging

- Resolution problem
 - ► PET and MRI work at the range of mm, but you have in a cubic mm 1,000,000 neurons!!!
- Difference Between Individuals
- Reproducibility and Replication Problems

Outline

The Grand History of Artificial Intelligence... What is Artificial Intelligence? Thus, What is Artificial Intelligence? Testing such approach, The Turing Test Implications of the Turing Test Extensions Some Issues About the Turing Test Other Approaches Cognitive Approach Use of Logic

2 Strong AI vs. Weak AI

Definition

Problems Will Robinson...

Searle's Chinese Room

3 History of A

The Long Dream

- Modern Times
- The Fragmentation Years
- The Resurgence of AI

< ロ > < 回 > < 回 > < 回 > < 回 >

Use of Logic

- Development of the formal logic in the late 19th and early 20th century has give us:
- PROBLEM!!!

What?

A precise notation about all kinds of thing in the world and their relations between them.

ヘロト 人間ト 人目下 人目下

Use of Logic

- Development of the formal logic in the late 19th and early 20th century has give us:
- PROBLEM!!!

What?

- It is not easy to take informal knowledge and state in the way the logical system need it.
- There is a big a difference between being able to solve a problem in principle and doing in practice.

Outline

The Grand History of Artificial Intelligen
What is Artificial Intelligence?
Thus, What is Artificial Intelligence?
Testing such approach, The Turing Test
Implications of the Turing Test
Extensions
Some Issues About the Turing Test
Other Approaches
Cognitive Approach
Use of Logic

Searle's Chinese Room

The Long Dream

- Modern Times
- The Fragmentation Years
- The Resurgence of AI

< ロ > < 回 > < 回 > < 回 > < 回 >

Strong AI vs. Weak AI

Strong AI

• Strong AI is artificial intelligence that matches or exceeds human intelligence.

Weak AL

 Weak AI system which is not intended to match or exceed the capabilities of human beings.

Strong AI vs. Weak AI

Strong Al

• Strong AI is artificial intelligence that matches or exceeds human intelligence.

Weak Al

• Weak AI system which is not intended to match or exceed the capabilities of human beings.

イロン イロン イヨン イヨン

Outline

What is Artificial Intelligence? Thus, What is Artificial Intelligence? Testing such approach, The Turing Test Implications of the Turing Test Extensions Some Issues About the Turing Test Other Approaches Cognitive Approach Use of Logic

- The Long Dream
- Modern Times
- The Fragmentation Years
- The Resurgence of AI

< ロ > < 回 > < 回 > < 回 > < 回 >

We have people like John McCarthy

Al founder John McCarthy writes

• "We cannot yet characterize in general what kinds of computational procedures we want to call intelligent."

He coined the term Artificial Intelligence

 At the Dartmouth workshop College in 1956 ("Dartmouth Summer Research Project on Artificial Intelligence")

イロト イヨト イヨト イヨト

We have people like John McCarthy

Al founder John McCarthy writes

 "We cannot yet characterize in general what kinds of computational procedures we want to call intelligent."

He coined the term Artificial Intelligence

• At the Dartmouth workshop College in 1956 ("Dartmouth Summer Research Project on Artificial Intelligence")

イロト イヨト イヨト イヨト

Arguments

- The first argument against strong AI is that it is impossible for them to feel emotions.
- The second argument against strong AI is that them cannot experience consciousness.
- The third argument against strong AI is that machines never understand the meaning of their processing.
- The fourth argument against strong AI is that machines cannot have free will.
- The fifth argument against strong AI is that God created humans as intelligent persons.

Arguments

- The first argument against strong AI is that it is impossible for them to feel emotions.
- The second argument against strong AI is that them cannot experience consciousness.
- The third argument against strong AI is that machines never understand the meaning of their processing.
- The fourth argument against strong AI is that machines cannot have free will.
- The fifth argument against strong AI is that God created humans as intelligent persons.

Arguments

- The first argument against strong AI is that it is impossible for them to feel emotions.
- The second argument against strong AI is that them cannot experience consciousness.
- The third argument against strong AI is that machines never understand the meaning of their processing.

 The fourth argument against strong AI is that machines cannot have free will.

 The fifth argument against strong AI is that God created humans as intelligent persons.

Arguments

- The first argument against strong AI is that it is impossible for them to feel emotions.
- The second argument against strong AI is that them cannot experience consciousness.
- The third argument against strong AI is that machines never understand the meaning of their processing.
- The fourth argument against strong AI is that machines cannot have free will.

 The fifth argument against strong AI is that God created humans as intelligent persons.

Arguments

- The first argument against strong AI is that it is impossible for them to feel emotions.
- The second argument against strong AI is that them cannot experience consciousness.
- The third argument against strong AI is that machines never understand the meaning of their processing.
- The fourth argument against strong AI is that machines cannot have free will.
- The fifth argument against strong AI is that God created humans as intelligent persons.

イロト イヨト イヨト

Outline

The Grand History of Artificial Intelligent
 What is Artificial Intelligence?
 Thus, What is Artificial Intelligence?
 Testing such approach, The Turing Test
 Implications of the Turing Test
 Extensions
 Some Issues About the Turing Test
 Other Approaches

 Cognitive Approach
 Use of Logic

The Long Dream

- Modern Times
- The Fragmentation Years
- The Resurgence of AI

< ロ > < 回 > < 回 > < 回 > < 回 >

Chinese Room [5]

The Chinese room was introduced in Searle's 1980 paper "Minds, Brains, and Programs", published in Behavioral and Brain

イロト イボト イヨト イヨト

40 / 60

Chinese Room [5]

The Chinese room was introduced in Searle's 1980 paper "Minds, Brains, and Programs", published in Behavioral and BrainSciences.

Something Notable

• It eventually became the journal's "most influential target article".

t is still generating an enormous number of commentaries and

Chinese Room [5]

The Chinese room was introduced in Searle's 1980 paper "Minds, Brains, and Programs", published in Behavioral and BrainSciences.

Something Notable

- It eventually became the journal's "most influential target article".
- It is still generating an enormous number of commentaries and responses.

David Cole, Philosophy Professor at University of Minnesota Duluth "The Chinese Room argument has probably been the most widely discussed philosophical argument in cognitive science to appear in the past 25 years"

< ロ > < 同 > < 回 > < 回 >

40 / 60

Chinese Room [5]

The Chinese room was introduced in Searle's 1980 paper "Minds, Brains, and Programs", published in Behavioral and BrainSciences.

Something Notable

- It eventually became the journal's "most influential target article".
- It is still generating an enormous number of commentaries and responses.

David Cole, Philosophy Professor at University of Minnesota Duluth

"The Chinese Room argument has probably been the most widely discussed philosophical argument in cognitive science to appear in the past 25 years"

40 / 60

Searle's Experiment

- Suppose that artificial intelligence research has succeeded in constructing a computer that behaves as if it understands Chinese.
- Suppose, says Searle, that this computer performs its task so convincingly that it comfortably passes the Turing test in Chinese.
- Now, a human is in a closed room and that he has a book with an English version of the aforementioned computer program.

Searle's Experiment

- Suppose that artificial intelligence research has succeeded in constructing a computer that behaves as if it understands Chinese.
- Suppose, says Searle, that this computer performs its task so convincingly that it comfortably passes the Turing test in Chinese.
- Now, a human is in a closed room and that he has a book with an English version of the aforementioned computer program.

 Then, a human are given Questions in Chinese, and He or She simply answers them using the book.

Searle's Experiment

- Suppose that artificial intelligence research has succeeded in constructing a computer that behaves as if it understands Chinese.
- Suppose, says Searle, that this computer performs its task so convincingly that it comfortably passes the Turing test in Chinese.
- Now, a human is in a closed room and that he has a book with an English version of the aforementioned computer program.

 Then, a human are given Questions in Chinese, and He or She simply answers them using the book.

Question

Does He/She understand Chinese?

Searle's Experiment

- Suppose that artificial intelligence research has succeeded in constructing a computer that behaves as if it understands Chinese.
- Suppose, says Searle, that this computer performs its task so convincingly that it comfortably passes the Turing test in Chinese.
- Now, a human is in a closed room and that he has a book with an English version of the aforementioned computer program.

Then

• Then, a human are given Questions in Chinese, and He or She simply answers them using the book.

Question!

• Does He/She understand Chinese?

IMPORTANT

The Chinese Room

It is the most damaging argument against "Strong AI"!!!

Even with the criticism against it

It is still a lingering question that the people in AI still cannnot answer!!!

イロト イヨト イヨト イヨト

IMPORTANT

The Chinese Room

It is the most damaging argument against "Strong AI"!!!

Even with the criticism against it

It is still a lingering question that the people in AI still cannnot answer!!!

< ロ > < 回 > < 回 > < 回 > < 回 >

Funny Observations

Something Notable

• Most of the discussion consists of attempts to refute it.

Something Notable

 "The overwhelming majority," notes BBS editor Stevan Harnad, "still think that the Chinese Room Argument is dead wrong."

It is more, Pat Hayes - An important Al researcher pointed out that

 Cognitive science ought to be redefined as "the ongoing research program of showing Searle's Chinese Room Argument to be false"

・ロト ・四ト ・ヨト ・ヨト

Funny Observations

Something Notable

• Most of the discussion consists of attempts to refute it.

Something Notable

• "The overwhelming majority," notes BBS editor Stevan Harnad, "still think that the Chinese Room Argument is dead wrong."

It is more, Pat Hayes - An important Al researcher pointed out that the

 Cognitive science ought to be redefined as "the ongoing research program of showing Searle's Chinese Room Argument to be false"

Funny Observations

Something Notable

• Most of the discussion consists of attempts to refute it.

Something Notable

• "The overwhelming majority," notes BBS editor Stevan Harnad, "still think that the Chinese Room Argument is dead wrong."

It is more, Pat Hayes - An important AI researcher pointed out that

 Cognitive science ought to be redefined as "the ongoing research program of showing Searle's Chinese Room Argument to be false"

There is even a novel (Hugo Award Finalist)

Blindsight

- A hard science fiction novel
- By PhD Marine-Mammal biologist Petter Watts

Cover

Where

The human race confronts its first contact with terrifying consequences:

• Conscious is not necessary... and the universe is full with non-conscious intelligence!!!

And the only way to survive is to allow an Hominid Vampire Branch (non-conscious) to exterminate the rest!!!

Where

The human race confronts its first contact with terrifying consequences:

- Conscious is not necessary... and the universe is full with non-conscious intelligence!!!
- And the only way to survive is to allow an Hominid Vampire Branch (non-conscious) to exterminate the rest!!!

イロト イヨト イヨト

Other Arguments Against Artificial Intelligence

There are other people

- Penrose's Argument
 - In "The Emperor's New Mind (1989)," he argues that known laws of physics are inadequate to explain the phenomenon of consciousness.
 Highly Criticized because of the following claims

Other Arguments Against Artificial Intelligence

There are other people

- Penrose's Argument
 - In "The Emperor's New Mind (1989)," he argues that known laws of physics are inadequate to explain the phenomenon of consciousness.

Using a variant of the Turing's Halting Problem to demonstrate that a system can be deterministic without being algorithmic.

 In addition, he claimed that consciousness derives from deeper level, finer scale activities inside brain neurons (Orch-OR theory).

Other Arguments Against Artificial Intelligence

There are other people

- Penrose's Argument
 - ► In "The Emperor's New Mind (1989)," he argues that known laws of physics are inadequate to explain the phenomenon of consciousness.
 - Highly Criticized because of the following claims

Using a variant of the Turing's Halting Problem to demonstrate that a system can be deterministic without being algorithmic.

 In addition, he claimed that consciousness derives from deeper level, finer scale activities inside brain neurons (Orch-OR theory).

However

- A discovery of quantum vibrations in microtubules by Anirban Bandyopadhyay of the National Institute for Materials Science in Japan.
 - It "could" confirm the hypothesis of Orch-OR theory.

There are other people

- Penrose's Argument
 - ► In "The Emperor's New Mind (1989)," he argues that known laws of physics are inadequate to explain the phenomenon of consciousness.
 - Highly Criticized because of the following claims

How

Using a variant of the Turing's Halting Problem to demonstrate that a system can be deterministic without being algorithmic.

In addition, he claimed that consciousness derives from deeper level, finer scale activities inside brain neurons (Orch-OR theory).

However

 A discovery of quantum vibrations in microtubules by Anirban Bandyopadhyay of the National Institute for Materials Science in Japan.

It "could" confirm the hypothesis of Orch-OR theory.

There are other people

- Penrose's Argument
 - ► In "The Emperor's New Mind (1989)," he argues that known laws of physics are inadequate to explain the phenomenon of consciousness.
 - Highly Criticized because of the following claims

How

Using a variant of the Turing's Halting Problem to demonstrate that a system can be deterministic without being algorithmic.

• In addition, he claimed that consciousness derives from deeper level, finer scale activities inside brain neurons (Orch-OR theory).

A discovery of quantum vibrations in microtubules by Anirban
 Bandyopadhyay of the National Institute for Materials Science in Japan.

It "could" confirm the hypothesis of Orch-OR theory.

There are other people

- Penrose's Argument
 - ► In "The Emperor's New Mind (1989)," he argues that known laws of physics are inadequate to explain the phenomenon of consciousness.
 - Highly Criticized because of the following claims

How

Using a variant of the Turing's Halting Problem to demonstrate that a system can be deterministic without being algorithmic.

• In addition, he claimed that consciousness derives from deeper level, finer scale activities inside brain neurons (Orch-OR theory).

However

• A discovery of quantum vibrations in microtubules by Anirban Bandyopadhyay of the National Institute for Materials Science in Japan.

uld" confirm the hypothesis of Orch-OR theory.

There are other people

- Penrose's Argument
 - ► In "The Emperor's New Mind (1989)," he argues that known laws of physics are inadequate to explain the phenomenon of consciousness.
 - Highly Criticized because of the following claims

How

Using a variant of the Turing's Halting Problem to demonstrate that a system can be deterministic without being algorithmic.

• In addition, he claimed that consciousness derives from deeper level, finer scale activities inside brain neurons (Orch-OR theory).

However

- A discovery of quantum vibrations in microtubules by Anirban Bandyopadhyay of the National Institute for Materials Science in Japan.
 - It "could" confirm the hypothesis of Orch-OR theory.

For more, read...

Article

Hameroff, Stuart; Roger Penrose (2014). "Consciousness in the universe: A review of the 'Orch OR' theory". Physics of Life Reviews 11 (1): 39–78.

Outline

- The Grand History of Artificial Intelligent
 What is Artificial Intelligence?
 Thus, What is Artificial Intelligence?
 Testing such approach, The Turing Test
 Implications of the Turing Test
 Extensions
 Some Issues About the Turing Test
 Other Approaches
 Cognitive Approach
 Use of Logic
- 2 Strong Al vs. Weak Al
 - Definition
 - Problems Will Robinson...
 - Searle's Chinese Room

The Resurgence of AI

In Ancient Times

Antiquity:

• Greek myths of Hephaestus and Pygmalion incorporated the idea of intelligent robots (such as Talos) and artificial beings (such as Galatea and Pandora).

Sacred mechanical statues built in Egypt

In Ancient Times

Antiquity:

- Greek myths of Hephaestus and Pygmalion incorporated the idea of intelligent robots (such as Talos) and artificial beings (such as Galatea and Pandora).
- Sacred mechanical statues built in Egypt.

384-322 B.C. Aristoteles described the syllogism a method of mechanical thought.

In Ancient Times

Antiquity:

- Greek myths of Hephaestus and Pygmalion incorporated the idea of intelligent robots (such as Talos) and artificial beings (such as Galatea and Pandora).
- Sacred mechanical statues built in Egypt.

384-322 B.C.

• Aristoteles described the syllogism a method of mechanical thought.

800 A.D.

• Jabir ibn Hayyan develops the Arabic alchemical theory of Takwin, the artificial creation of life in the laboratory.

A D > A D > A D > A D >

49 / 60

1206

• Al-Jazari created a programmable orchestra of mechanical human beings.

1206

• Al-Jazari created a programmable orchestra of mechanical human beings.

1495-1500

 Paracelsus claimed to have created an artificial man out of magnetism, sperm and alchemy.

Leonardo created Robots for Ludovico Sforza.

イロト イボト イヨト イヨト

1206

• Al-Jazari created a programmable orchestra of mechanical human beings.

1495-1500

- Paracelsus claimed to have created an artificial man out of magnetism, sperm and alchemy.
- Leonardo created Robots for Ludovico Sforza.

イロト イヨト イヨト

1206

• Al-Jazari created a programmable orchestra of mechanical human beings.

1495-1500

- Paracelsus claimed to have created an artificial man out of magnetism, sperm and alchemy.
- Leonardo created Robots for Ludovico Sforza.

イロト イヨト イヨト

Outline

The Grand History of Artificial Intelligence
What is Artificial Intelligence?
Thus, What is Artificial Intelligence?
Testing such approach, The Turing Test
Implications of the Turing Test
Extensions
Some Issues About the Turing Test
Other Approaches
Cognitive Approach
Use of Logic

2 Strong AI vs. Weak AI

Definition

Problems Will Robinson...

Searle's Chinese Room

< ロ > < 回 > < 回 > < 回 > < 回 >

1600 - 1650

- John Napier discovered logarithms and the binary abacus.
 - Wilhelm Schickard created the first mechanical calculating machine.
- Pascal developed the first real calculator. Addition and subtraction were carried out by using a series of very light rotating wheels. His system is still used today in car odometers which track a car's mileage.

1600 - 1650

- John Napier discovered logarithms and the binary abacus.
- Wilhelm Schickard created the first mechanical calculating machine.

Pascal developed the first real calculator. Addition and subtraction were carried out by using a series of very light rotating wheels. His system is still used today in car odometers which track a car's mileage.

• Mary Shelley published the story of Frankenstein.

1600 - 1650

- John Napier discovered logarithms and the binary abacus.
- Wilhelm Schickard created the first mechanical calculating machine.
- Pascal developed the first real calculator. Addition and subtraction were carried out by using a series of very light rotating wheels. His system is still used today in car odometers which track a car's mileage.

• Mary Shelley published the story of Frankenstein.

1822-1859

 Charles Babbage & Ada Lovelace worked on programmable mechanical calculating machines.

1600 - 1650

- John Napier discovered logarithms and the binary abacus.
- Wilhelm Schickard created the first mechanical calculating machine.
- Pascal developed the first real calculator. Addition and subtraction were carried out by using a series of very light rotating wheels. His system is still used today in car odometers which track a car's mileage.

1818

• Mary Shelley published the story of Frankenstein.

• Charles Babbage & Ada Lovelace worked on programmable mechanical calculating machines.

1600 - 1650

- John Napier discovered logarithms and the binary abacus.
- Wilhelm Schickard created the first mechanical calculating machine.
- Pascal developed the first real calculator. Addition and subtraction were carried out by using a series of very light rotating wheels. His system is still used today in car odometers which track a car's mileage.

1818

• Mary Shelley published the story of Frankenstein.

1822-1859

• Charles Babbage & Ada Lovelace worked on programmable mechanical calculating machines.

1861

• Paul Broca, Camillo Golgi and Ramon y Cajal discover the structure of the brain

• Karel Capek coins the term 'robot.'

1938

• John von Neuman's minimax theorem.

1950

 Alan Turing proposes the Turing Test as a measure of machine intelligence.

1861

• Paul Broca, Camillo Golgi and Ramon y Cajal discover the structure of the brain

1917

• Karel Capek coins the term 'robot.'

John von Neuman's minimax theorem.

1950

 Alan Turing proposes the Turing Test as a measure of machine intelligence.

1861

• Paul Broca, Camillo Golgi and Ramon y Cajal discover the structure of the brain

1917

• Karel Capek coins the term 'robot.'

1938

• John von Neuman's minimax theorem.

Alan Turing proposes the Turing Test as a measure of machine intelligence.

1861

• Paul Broca, Camillo Golgi and Ramon y Cajal discover the structure of the brain

1917

• Karel Capek coins the term 'robot.'

1938

• John von Neuman's minimax theorem.

1950

 Alan Turing proposes the Turing Test as a measure of machine intelligence.

3

イロト 不得 トイヨト イヨト

1956-1974

• The Golden Years – The Promise of an intelligent Machine

		_	
			E4 / 4

1956-1974

• The Golden Years – The Promise of an intelligent Machine

► Movies like "The Forbin Project" promised computers with Strong AI

1974-1980

• First Al winter

- It is shown that many problems in AI are NP-Complete.
- Many projects are stopped in AI.

1956-1974

• The Golden Years – The Promise of an intelligent Machine

Movies like "The Forbin Project" promised computers with Strong AI

1974-1980

First AI winter

It is shown that many problems in AI are NP-Complete.
 Many projects are stopped in AI.

1980-1987

Al Revival Experts Systems, Knowledge Revolution.

1956-1974

• The Golden Years – The Promise of an intelligent Machine

Movies like "The Forbin Project" promised computers with Strong AI

1974-1980

- First AI winter
 - ▶ It is shown that many problems in AI are NP-Complete.

• Al Revival Experts Systems, Knowledge Revolution.

1987-1993

• Second Al winter

Fall of the Expert System Market and the LISP Machines

1956-1974

• The Golden Years – The Promise of an intelligent Machine

Movies like "The Forbin Project" promised computers with Strong AI

1974-1980

- First AI winter
 - ▶ It is shown that many problems in AI are NP-Complete.
 - Many projects are stopped in AI.

• Al Revival Experts Systems, Knowledge Revolution.

1987-1993

• Second Al winter

Fall of the Expert System Market and the LISP Machines.

1956-1974

• The Golden Years – The Promise of an intelligent Machine

► Movies like "The Forbin Project" promised computers with Strong AI

1974-1980

- First AI winter
 - It is shown that many problems in AI are NP-Complete.
 - Many projects are stopped in AI.

1980-1987

• AI Revival Experts Systems, Knowledge Revolution.

• Second AI winter

Fall of the Expert System Market and the LISP Machines.

1956-1974

• The Golden Years – The Promise of an intelligent Machine

Movies like "The Forbin Project" promised computers with Strong AI

1974-1980

- First AI winter
 - It is shown that many problems in AI are NP-Complete.
 - Many projects are stopped in AI.

1980-1987

• AI Revival Experts Systems, Knowledge Revolution.

1987-1993

Second AI winter

1956-1974

• The Golden Years – The Promise of an intelligent Machine

Movies like "The Forbin Project" promised computers with Strong AI

1974-1980

- First AI winter
 - It is shown that many problems in AI are NP-Complete.
 - Many projects are stopped in AI.

1980-1987

• AI Revival Experts Systems, Knowledge Revolution.

1987-1993

- Second AI winter
 - Fall of the Expert System Market and the LISP Machines.

Outline

- The Grand History of Artificial Intelligen What is Artificial Intelligence? Thus, What is Artificial Intelligence? Testing such approach, The Turing Test Implications of the Turing Test Extensions Some Issues About the Turing Test Other Approaches Cognitive Approach Use of Logic
- 2 Strong Al vs. Weak Al
 - Definition
 - Problems Will Robinson...
 - Searle's Chinese Room

The Resurgence of AI

< ロ > < 回 > < 回 > < 回 > < 回 >

The Fragmentation Years 1993-2009

Al was still going through a Winter

• The Fragmentation Years

- Computer Vision
- Robotics
- Machine Learning
- Fuzzy Logic
- Bayesian Networks
- Evolutionary Methods
- etc

Outline

- The Grand History of Artificial Intelligen What is Artificial Intelligence? Thus, What is Artificial Intelligence? Testing such approach, The Turing Test Implications of the Turing Test Extensions Some Issues About the Turing Test Other Approaches Cognitive Approach Use of Logic
- 2 Strong Al vs. Weak Al
 - Definition
 - Problems Will Robinson...
 - Searle's Chinese Room

Finally, 2010 to the present

Machine Learning

- It Becomes Mainstream....
- Even Computer Vision is using it...

It makes inroads thanks to the huge databases and GPU systems...

The new algorithms are allowing information retrieval at large scale...

< ロ > < 回 > < 回 > < 回 > < 回 >

Finally, 2010 to the present

Machine Learning

- It Becomes Mainstream....
- Even Computer Vision is using it...

Deep Learning

It makes inroads thanks to the huge databases and GPU systems...

The new algorithms are allowing information retrieval at large scale.

イロト イヨト イヨト

Finally, 2010 to the present

Machine Learning

- It Becomes Mainstream....
- Even Computer Vision is using it...

Deep Learning

It makes inroads thanks to the huge databases and GPU systems...

Natural Language Processing

The new algorithms are allowing information retrieval at large scale...

イロト イヨト イヨト

Thus

The use of Linear Algebra, Probability and Optimization have become Kings

• They have found their place in Artificial Intelligence

The Future looks Great

Still, I believe that we need practical

"Whatever Works..."

Thus

The use of Linear Algebra, Probability and Optimization have become Kings

• They have found their place in Artificial Intelligence

The Future looks Great

- Still, I believe that we need practical
 - "Whatever Works..."

イロト イヨト イヨト

Bibliography

- N. Nilsson, The quest for artificial intelligence: A history of ideas and achievements.
 01 2010.
- L. S. Gottfredson, "Mainstream science on intelligence: An editorial with 52 signatories, history, and bibliography," 1997.
- S. Russell and P. Norvig, *Artificial Intelligence: A Modern Approach*. Upper Saddle River, NJ, USA: Prentice Hall Press, 3rd ed., 2009.
- J. H. Moor, "The status and future of the turing test," *Minds and Machines*, vol. 11, no. 1, pp. 77–93, 2001.
- M. De and D. Cordio, "Searle's chinese room argument and its replies: A constructive re-warming and the future of artificial intelligence," 12 2018.

イロト イヨト イヨト